• 中国科技核心期刊
  • JST收录期刊
Volume 30 Issue 5
Oct  2022
Turn off MathJax
Article Contents
YE Xiao-wei, LIU Yan-min, ZHANG Wen-zhong, LIU Yi-fu, YAO Zhi-chong. Research on Influence of Operating Depth on Motion State of Underwater Gliders[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 597-604. doi: 10.11993/j.issn.2096-3920.202104016
Citation: YE Xiao-wei, LIU Yan-min, ZHANG Wen-zhong, LIU Yi-fu, YAO Zhi-chong. Research on Influence of Operating Depth on Motion State of Underwater Gliders[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 597-604. doi: 10.11993/j.issn.2096-3920.202104016

Research on Influence of Operating Depth on Motion State of Underwater Gliders

doi: 10.11993/j.issn.2096-3920.202104016
  • Received Date: 2021-04-28
  • Rev Recd Date: 2021-09-01
  • Available Online: 2022-09-15
  • Net buoyancy, which drives underwater gliders, accounts for approximately 0.5% of their displacement, and its small change may significantly affect the state of their motion. During the gliding process, the displacement changes dynamically owing to the variation in seawater density and pressure with depth, thus resulting in a change in net buoyancy that would then affect the steady state of gliding. In this study, the effect of the change in net buoyancy on the steady state of the gliding motion was studied based on the dynamic equilibrium equation. By combining the mathematical and dynamical models of displacement change with depth the influence of depth on the gliding motion state was studied through simulations. The results show that: 1) the actual motion of underwater gliders under the influence of depth is dynamically balanced gliding, instead of steady balanced gliding; 2) the displacement-depth variation affects the gliding speed with a marginal effect on gliding attitude; 3) without additional control, gliding speed decreases first and then increases in the diving stage, and increases first and then decreases in the rising stage; and 4) the influence of the change in net buoyancy on gliding attitude could be eliminated by adjusting the position of the internal sliding mass, which requires little power. This study provides a reference for the precise control of underwater gliders used in marine environment monitoring and detection.

     

  • loading
  • [1]
    钱洪宝, 卢晓亭. 我国水下滑翔机技术发展建议与思考[J]. 水下无人系统学报, 2019, 27(5): 474-479. doi: 10.11993/j.issn.2096-3920.2019.05.001

    Qian Hong-bao, Lu Xiao-ting. Technical Development of Underwater Glider in China: Suggestions and Thoughts[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 474-479. doi: 10.11993/j.issn.2096-3920.2019.05.001
    [2]
    Kang J, Jeoung S K, Oh J Y, et al. An Analysis of Carbon Fiber Hull Structure of a New Underwater Glider[J]. International Journal of Modern Physics B, 2018, 32(19): 1-6.
    [3]
    沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106.

    Shen Xin-rui, Wang Yan-hui, Yang Shao-qiong, et al. Development of Underwater Gliders: An Overview and Prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106.
    [4]
    杨燕, 孙秀军, 王延辉. 浅海型水下滑翔机技术研究现状分析[J]. 海洋技术学报, 2015, 34(4): 7-14.

    Yang Yan, Sun Xiu-jun, Wang Yan-hui. Analysis on the State-of-the-Art Shallow Water Underwater Gliders[J]. Journal of Ocean Technology, 2015, 34(4): 7-14.
    [5]
    Leonard N E, Graver J G. Model-based Feedback Control of Autonomous Underwater Gliders[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 633-645. doi: 10.1109/48.972106
    [6]
    Latifa U, Putri T W O, Trilaksono B R, et al. Modelling, Identification, and Simulation of Autonomous Underwater Glider in Longitudinal Plane for Control purpose[C]//2017 2nd International Conference on Control and Robotics Engineering (ICCRE), Bangkok: ICCRE, 2017.
    [7]
    Cao J J, Cao J L, Hu Y L, et al. LQR Control of a Three Dimensional Underwater Glider[J]. Journal of Ship Mechanics, 2019, 23(6): 674-682.
    [8]
    孙秀军, 王磊, 桑宏强. Petrel-Ⅱ 200 水下滑翔机动力学建模与仿真[J]. 水下无人系统学报, 2019, 27(5): 480-487.

    Sun Xiu-jun, Wang Lei, Sang Hong-qiang. Dynamic Modeling and Simulation of Underwater Glider Petrel-II 200[J]. Journal of Ocean Technology, 2019, 27(5): 480-487.
    [9]
    陈宇航, 严卫生, 高剑, 等. 水下滑翔机纵倾运动的自适应积分反演控制[J]. 兵工学报, 2011, 32(8): 981-985.

    Chen Yu-hang, Yan Wei-sheng, Gao Jian, et al. Adaptive Integral Backstepping Control for Vertical Pitch Motion of Underwater Gliders[J]. ActaarmamentarII, 2011, 32(8): 981-985.
    [10]
    朱心科, 俞建成, 王晓辉. 能耗最优的水下滑翔机采样路径规划[J]. 机器人, 2011, 33(3): 360-365.

    Zhu Xin-ke, Yu Jian-cheng, Wang Xiao-hui. Sampling Path Planning of Underwater Glider for Optimal Energy Consumption[J]. Robot, 2011, 33(3): 360-365.
    [11]
    Zhang L H, Yan L, Wang Y. Progressive Improvement of Underwater Glider for High Performance[C]//The 17th International Manufacturing Conference. Shenzhen: IMCC, 2017.
    [12]
    Yang M, Wang Y, Wang S, et al. Motion Parameter Optimization Forgliding Strategy Analysis of Underwater Gliders[J]. Ocean engineering, 2019, 191: 106502. doi: 10.1016/j.oceaneng.2019.106502
    [13]
    Wang S, Li H, Wang Y, et al. Dynamic Modeling and Motion Analysis for a Dual-buoyancy-driven Full Ocean Depth Glider[J]. Ocean Engineering, 2019, 187: 106163. doi: 10.1016/j.oceaneng.2019.106163
    [14]
    Wang S X, Yang M, Wang Y H, et al. Optimization of Flight Parameters for Petrel-L Underwater Glider[J]. IEEE Journal of Oceanic Engineering, 2021, 46(3): 817-828. doi: 10.1109/JOE.2020.3030573
    [15]
    Yang Y P, Liu Y H, Wang S X, et al. Evaluation Models and Criteria of Motion Performance for Underwater Gliders[J]. Applied Ocean Research, 2020, 102: 102286.
    [16]
    Graver J G, Leonard N E. Underwater Glider Dynamics and Control[C]//Proceedings of the 12th International Symposium on Unmanned Untethered Submersible Technology. Piscataway: IEEE, 2001: 1-14.
    [17]
    Zhang S W, Yu J C, Zhang A Q, et al. Spiraling Motion of Underwater Gliders: Modeling, Analysis, and Experimental Results[J]. Ocean Engineering, 2013, 60: 1-13. doi: 10.1016/j.oceaneng.2012.12.023
    [18]
    Graver J G. Underwater Glider: Dynamics, Control, and Design[D]. Princeton, NJ: Princeton University, 2005.
    [19]
    朱俊江, 李三忠, 陆敬安, 等. 南海北部神狐海域地质环境综合调查及科学意义[J]. 地球科学, 2020, 45(4): 1416-1426.

    Zhu Jun-jiang, Li San-zhong, Lu Jing-an, et al. Scientific Implications and Preliminary Surveying Results of Geological and Physical Oceanography Environment in the Shenhu Area of the Northern South China Sea[J]. Earth Science, 2020, 45(4): 1416-1426.
    [20]
    IOC, SCOR, IAPSO. The International Thermodynamic Equation of Seawater-2010: Calculation and Use of Thermodynamic Properties[M]//Intergovernmental Oceanographic Commission, Manuals and Guides56. [S.l.]: UNESCO, 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article Views(2129) PDF Downloads(36) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return