• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Turn off MathJax
Article Contents
ZHOU Jingkun, WANG Zhong, ZHOU Jingjun, WANG Qian, ZHANG Zhimin, GENG Xiaoming. Research on Overall Matching Optimization Design of Supporting Parameters of the Power Propulsion System for Underwater Vehicles[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0137
Citation: ZHOU Jingkun, WANG Zhong, ZHOU Jingjun, WANG Qian, ZHANG Zhimin, GENG Xiaoming. Research on Overall Matching Optimization Design of Supporting Parameters of the Power Propulsion System for Underwater Vehicles[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0137

Research on Overall Matching Optimization Design of Supporting Parameters of the Power Propulsion System for Underwater Vehicles

doi: 10.11993/j.issn.2096-3920.2025-0137
  • Received Date: 2025-09-29
  • Accepted Date: 2025-11-06
  • Rev Recd Date: 2025-11-04
  • Available Online: 2026-01-15
  • To verify the effect of the overall matching optimization design, this study takes the simulation model of a typical underwater vehicle Power Propulsion System (PPS) as an example. By establishing its finite element simplified model and based on the Multi Objective Genetic Algorithm (MOGA), the length ratio of the coupling to the tail shaft, the support position of the tail shaft, and the support stiffness are selected as parameter variables. The vibration levels at four key positions on the shell are used as the objective functions to carry out separate optimization of parameter variables and overall matching optimization respectively. The results show that the vibration response of the system can be optimized by adjusting the length ratio of the coupling to the tail shaft, changing the support position and support stiffness of the tail shaft, etc. Among them, the vibration reduction effect after optimizing the length ratio of the coupling to the tail shaft can reach 5.2 dB, while the overall matching optimization is more significant than the separate optimization of each parameter, with the vibration level drop reaching 9.2 dB. Finally, the conclusion is drawn that in the process of optimizing the support parameters of the power propulsion system, each parameter can be matched and optimized through a multi-objective genetic algorithm to minimize the overall vibration response level of the system. The overall matching optimization method can provide a new optimization idea for the vibration reduction optimization design of the power propulsion system of underwater vehicles.

     

  • loading
  • [1]
    尹韶平. 鱼雷减振降噪技术[M]. 北京: 国防工业出版社, 2016.
    [2]
    史小锋, 党建军, 梁跃, 等. 水下攻防武器能源动力技术发展现状及趋势[J]. 水下无人系统学报, 2021, 29(6): 634-647. doi: 10.11993/j.issn.2096-3920.2021.06.001

    SHI X F, DANG J J, LIANG Y, et al. Development status and trend of energy and power technology for underwater attack and defensive weapon[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 634-647. doi: 10.11993/j.issn.2096-3920.2021.06.001
    [3]
    张凯, 尹韶平, 曹小娟, 等. 鱼雷动力及推进系统简化建模与振动分析[J]. 水下无人系统学报, 2019, 27(2): 217-224. doi: 10.11993/j.issn.2096-3920.2019.02.015

    ZHANG K, YIN S P, CAO X J, et al. Simplified modeling and vibration analysis of power and propulsion system for torpedo[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 217-224. doi: 10.11993/j.issn.2096-3920.2019.02.015
    [4]
    段勇, 刘瑞杰, 马琳. 金属橡胶在鱼雷推进轴系振动控制中的应用[J]. 船舶力学, 2020, 24(9): 1187-1195.

    DUAN Y, LIU R J, MA L. Application of metal rubber to the vibration control of torpedo propulsion shafting[J]. Journal of Ship Mechanics, 2020, 24(9): 1187-1195.
    [5]
    曹浩, 张伟伟, 文立华, 等. 鱼雷动力系统振动控制技术及应用研究[J]. 水下无人系统学报, 2019, 27(5): 595-600. doi: 10.11993/j.issn.2096-3920.2019.05.017

    CAO H, ZHANG W W, WEN L H, et al. Research on Vibration Control Technologies of Torpedo Power System and Its Application[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 595-600. doi: 10.11993/j.issn.2096-3920.2019.05.017
    [6]
    李海峰, 朱石坚, 翁雪涛. 轴承刚度及间距对水下结构声振特性影响研究[J]. 船舶工程, 2016, 38(9): 57-61. doi: 10.13788/j.cnki.cbgc.2016.09.057

    LI H F, ZHU S J, WENG X T. Research on Effects of Shaft Bearing Stiffness and Spacing on Vibra-acoustic Radiation of Underwater Structure[J]. Ship Engineering, 2016, 38(9): 57-61. doi: 10.13788/j.cnki.cbgc.2016.09.057
    [7]
    黄修长, 苏智伟, 倪臻, 等. 基于频响函数综合的推进轴系动力学建模与支撑结构参数优化分析[J]. 振动与冲击, 2019, 38(4): 33-39. doi: 10.13465/j.cnki.jvs.2019.04.006

    HUANG X C, SU Z W, NI Z, et al. Dynamic modeling and optimization of the supporting structure of a propulsion shaft system by an FRF-based substructuring method[J]. Journal of Vibration and Shock, 2019, 38(4): 33-39. doi: 10.13465/j.cnki.jvs.2019.04.006
    [8]
    田金鑫. 潜航器中浮筏隔振系统的设计与应用研究[D]. 济南: 山东大学, 2020.
    [9]
    TANG C K, JIANG Y H, LIU J. Optimization method of bearing support positions in a high-speed flexi-ble rotor system[J]. Journal of Donghua University(English Edition), 2020, 37(6): 504-511.
    [10]
    LIU J, TANG C K. A method for predicting the influences of bearing support stiffness and position on the vibrations of a flexible rotor system[J]. International Journal of Acoustics and Vibrations, 2021, 26(4): 287-295. doi: 10.20855/ijav.2021.26.41798
    [11]
    AN Y C, LIU J, YANG C Y, et al. Vibration characteristic analysis and optimization of the propulsion shaft in the underwater vehicle[C]// Proceedings of the 11th IFToMM International Conference on Rotordynamics. Beijing, China: IFToMM, 2023: 439-451.
    [12]
    安宇晨, 刘静, 潘光. 支撑刚度对水下航行器电机-推进轴系振动特性的影响规律分析及优化[J]. 推进技术, 2024, 45(11): 198-209. doi: 10.13675/j.cnki.tjjs.2311055

    AN Y C, LIU J, PAN G. Influences and optimization of support stiffness on vibrations of motor propulsion shaft system in an unmanned underwater vehicle[J]. Journal of Propulsion Technology, 2024, 45(11): 198-209. doi: 10.13675/j.cnki.tjjs.2311055
    [13]
    黄晶晶. 基于振动控制的柔性转子系统多目标优化技术研究[D]. 西安: 西北工业大学, 2016.
    [14]
    张聪, 疏炳南, 张江涛, 等. 基于响应面法-遗传算法的船舶推进轴系多目标优化设计[J]. 上海交通大学学报, 2025, 59(4): 466-475. doi: 10.16183/j.cnki.jsjtu.2023.318

    ZHANG C, SHU B N, ZHANG J T, et al. Multi-Objective Optimization Design of Ship Propulsion Shafting Based on Response Surface Methodology and Genetic Algorithm[J]. Journal of Shanghai Jiaotong University, 2025, 59(4): 466-475. doi: 10.16183/j.cnki.jsjtu.2023.318
    [15]
    代丽华, 张志敏. 基于MOGA的船舶推进轴系校中优化方法[J]. 船舶工程, 2022, 44(2): 65-68,139. doi: 10.13788/j.cnki.cbgc.2022.02.11

    DAI L H, ZHANG Z M. Optimization method of ship propulsion shafting alignment based on MOGA[J]. Ship Engineering, 2022, 44(2): 65-68,139. doi: 10.13788/j.cnki.cbgc.2022.02.11
    [16]
    丁鸿昌, 李家成, 李茂源, 等. 高速角接触球轴承刚度计算及影响因素分析[J]. 轴承, 2019(11): 1-7. doi: 10.19533/j.issn1000-3762.2019.11.001

    DING H C, LI J C, LI M Y, et al. Calculation and influencing factor analysis of stiffness of high speed angular contact ball bearings[J]. Bearing, 2019(11): 1-7. doi: 10.19533/j.issn1000-3762.2019.11.001
    [17]
    孙旭阳, 周景军, 王谦, 等. 基于声学超材料的鱼雷动力舱段减振方法[J]. 水下无人系统学报, 2024, 32(6): 1072-1081. doi: 10.11993/j.issn.2096-3920.2024-0063

    SUN X Y, ZHOU J J, WANG Q, et al. Vibration Reduction Method for Power Cabin of Torpedoes Based on Acoustic Metamaterials[J]. Journal of Unmanned Undersea Systems, 2024, 32(6): 1072-1081. doi: 10.11993/j.issn.2096-3920.2024-0063
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article Views(28) PDF Downloads(12) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return