• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Turn off MathJax
Article Contents
LI Hanghang, ZHU Faxin, LI Jingjing, WANG Shenger. Overall Design and Control of a Pixhawk-Based Underwater Vehicle[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0136
Citation: LI Hanghang, ZHU Faxin, LI Jingjing, WANG Shenger. Overall Design and Control of a Pixhawk-Based Underwater Vehicle[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0136

Overall Design and Control of a Pixhawk-Based Underwater Vehicle

doi: 10.11993/j.issn.2096-3920.2025-0136
  • Received Date: 2025-09-28
  • Accepted Date: 2025-11-06
  • Rev Recd Date: 2025-10-31
  • Available Online: 2026-01-13
  • To further optimize the development cycle and project cost of underwater vehicles, this paper designs and implements a Remotely Operated Vehicle (ROV) system based on an open-source hardware and software platform. Firstly, Fusion360 software is used for the three-dimensional modeling of the underwater vehicle, and 3D printing technology is adopted to achieve rapid prototyping. Secondly, a combined hierarchical control architecture of Pixhawk and Raspberry Pi is designed: the upper layer uses Raspberry Pi as the decision-making unit, which is responsible for running Robot Operating System (ROS) nodes, processing visual data, task planning, and high-speed communication with the ground; the lower layer uses Pixhawk as the real-time motion control unit, which calculates the navigation attitude and drives the thrusters. The MAVLink communication protocol is used to realize data interaction between the upper and lower layers, as well as between the system and the remote ground control station. Tests conducted in a static water environment show that the vehicle platform can stably receive and respond to control commands sent by the ground station, with a depth-keeping control accuracy within ±0.3 meters and a heading control deviation of less than ±3 degrees. The research indicates that the approach proposed in this paper, which is based on the open-source Pixhawk flight control platform and low-cost manufacturing technology, is feasible. This scheme shortens the development cycle and reduces the cost of the underwater robot system, and its hardware and software architecture has good scalability, providing reusable technical references and practical experience for the rapid development of small and medium-sized underwater detection equipment.

     

  • loading
  • [1]
    管志光, 吴昊, 王学林, 等. 基于模糊PID的小型水下机器人运动控制研究[J]. 火力与指挥控制, 2024, 49(10): 111-117. doi: 10.3969/j.issn.1002-0640.2024.10.015

    GUAN Z G, WU H, WANG X L, et al. Research on motion control of small remote operated vehicles based on fuzzy PID[J]. Fire Control & Command Control, 2024, 49(10): 111-117. doi: 10.3969/j.issn.1002-0640.2024.10.015
    [2]
    李国虎, 周焕银. 基于自适应S面算法的小型ROV艏向和深度运动控制研究[J]. 机床与液压, 2024, 52(8): 34-38 doi: 10.3969/j.issn.1001-3881.2024.08.007

    LI G H, ZHOU H Y. Research on heading and depth motion control of small ROV based on adaptive S-surface algorithm[J]. Machine Tool & Hydraulics, 2024, 52(8): 34-38. doi: 10.3969/j.issn.1001-3881.2024.08.007
    [3]
    张渥, 许条建. 开架式ROV水动力特性数值模拟分析[J]. 中国舰船研究, 2025, 20(4): 111-123. doi: 10.19693/j.issn.1673-3185.04037

    ZHANG W, XU T J. Numerical simulation analysis of hydrodynamic characteristics of open-frame ROV[J]. Chinese Journal of Ship Research, 2025, 20(4): 111-123. doi: 10.19693/j.issn.1673-3185.04037
    [4]
    江梦洁, 陈超核, 张连宾, 等. 开架式ROV水动力模型建立与运动仿真研究[J]. 中国舰船研究, 2025, 20(4): 99-110. doi: 10.19693/j.issn.1673-3185.03953

    JIANG M J, CHEN C H, ZHANG L B, et al. Establishment of hydrodynamic model and motion simulation of open-frame ROV[J]. Chinese Journal of Ship Research, 2025, 20(4): 99-110. doi: 10.19693/j.issn.1673-3185.03953
    [5]
    鲁挺, 王宁, 王仁慧. 推力受限的ROV预设性能精准跟踪控制[J]. 中国舰船研究, 2023, 18(3): 48-56. doi: 10.19693/j.issn.1673-3185.02787

    LU T, WANG N, WANG R H. Prescribed performance precise tracking control for ROV with thrust constraints[J]. Chinese Journal of Ship Research, 2023, 18(3): 48-56. doi: 10.19693/j.issn.1673-3185.02787
    [6]
    吴和龙, 向政蓉, 高宇航, 等. 基于Pixhawk飞控的硬件在环仿真系统设计[J]. 高技术通讯, 2024, 34(1): 46-53. doi: 10.3772/j.issn.1002-0470.2024.01.005

    WU H L, XIANG Z R, GAO Y H, et al. Design of hardware-in-the-loop simulation system based on Pixhawk flight controller[J]. High Technology Letters, 2024, 34(1): 46-53. doi: 10.3772/j.issn.1002-0470.2024.01.005
    [7]
    YANG Y, BAN H, WANG J, et al. ROV-assisted in situ density estimation for sea cucumbers via lightweight YOLOv8-FA and enhanced ByteTrack[J]. Aquaculture International, 2025, 33(6): 507-507. doi: 10.1007/s10499-025-02170-x
    [8]
    裴蕾, 田军委, 苏宇, 等. 超小型模块化ROV密封舱的结构设计及力学仿真[J]. 机床与液压, 2018, 46(21): 54-59. doi: 10.3969/j.issn.1001-3881.2018.21.012

    PEI L, TIAN J W, SU Y, et al. Structural design and mechanical simulation of ultra-small modular ROV pressure cabin[J]. Machine Tool & Hydraulics, 2018, 46(21): 54-59. doi: 10.3969/j.issn.1001-3881.2018.21.012
    [9]
    张光义, 曾庆军, 戴晓强, 等. 水下安全检测与作业型机器人控制系统[J]. 中国舰船研究, 2018, 13(6): 113-119.

    ZHANG G Y, ZENG Q J, DAI X Q, et al. Underwater safety detection and operation robot control system[J]. Chinese Journal of Ship Research, 2018, 13(6): 113-119.
    [10]
    WANG J, XIANG S, SHEN T, et al. Imitation learning from observation for ROV path tracking[J]. Intelligent Marine Technology and Systems, 2025, 3(1): 20-20. doi: 10.1007/s44295-025-00069-0
    [11]
    FILKIN T, LIPIN I, SLIUSARN. Integrating a UAV system based on Pixhawk with a laser methane mini detector to study methane emissions[J]. Drones, 2023, 7(10): 625-.
    [12]
    杨淼, 盛智彬, 王海文, 等. 小型观测级ROV四自由度运动控制系统研究[J]. 舰船科学技术, 2020, 42(19): 83-89.

    YANG M, SHENG Z B, WANG H W, et al. Research on four-degree-of-freedom motion control system of small observation-class ROV[J]. Ship Science and Technology, 2020, 42(19): 83-89.
    [13]
    闫勋, 袁辉, 甄庆喆, 等. 基于Pixhawk开源飞控项目的无人艇开发[J]. 舰船科学技术, 2020, 42(5): 148-151.

    YAN X, YUAN H, ZHEN Q Z, et al. Development of unmanned surface vehicle based on Pixhawk open-source flight control project[J]. Ship Science and Technology, 2020, 42(5): 148-151.
    [14]
    綦声波, 尹保安, 苏志坤. 基于模糊PID的小型ROV定深运动控制仿真[J]. 现代电子技术, 2020, 43(2): 20-23,28.

    QI S B, YIN B A, SU Z K. Simulation of depth-keeping motion control for small ROV based on fuzzy PID[J]. Modern Electronics Technique, 2020, 43(2): 20-23,28.
    [15]
    肖朋振, 刘爽. 小型有缆无人水下机器人控制系统设计[J]. 小型微型计算机系统, 2019, 40(2): 451-455.

    XIAO P Z, LIU S. Design of control system for small remotely operated underwater vehicle[J]. Journal of Chinese Computer Systems, 2019, 40(2): 451-455.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article Views(33) PDF Downloads(12) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return