
| Citation: | WANG Yudi, YANG Mingzhong, LIU Lixin. Ocean sound separation algorithm based on time-frequency interleaved attention[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0127 |
| [1] |
BAYRAKCI G, KLINGELHOEFER F. An introduction to the ocean soundscape[M]. Noisy Oceans: Monitoring Seismic and Acoustic Signals in the Marine Environment. Hoboken, NJ: Wiley, 2024.
|
| [2] |
DUARTE C M, CHAPUIS L, COLLIN S P, et al. The soundscape of the Anthropocene ocean[J]. Science, 2021, 371(6529): eaba4658. doi: 10.1126/science.aba4658
|
| [3] |
LI D, WU M, YU L, et al. Single-channel blind source separation of underwater acoustic signals using improved NMF and FastICA[J]. Frontiers in Marine Science, 2023, 9: 1097003. doi: 10.3389/fmars.2022.1097003
|
| [4] |
谢加武. 基于深度学习的水下声源分离技术研究[D]. 成都: 电子科技大学, 2019.
|
| [5] |
WANG M, ZHANG W, SHAO M, et al. Separation and extraction of compound-fault signal based on multi-constraint non-negative Matrix factorization[J]. Entropy, 2024, 26(7): 583. doi: 10.3390/e26070583
|
| [6] |
SCHULZE F K, RICHARD G, KELLEY L, et al. Unsupervised music source separation using differentiable parametric source models[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023, 31: 1276-1289. doi: 10.1109/TASLP.2023.3252272
|
| [7] |
ANSARI S, ALATRANY A S, ALNAJJAR K A, et al. A survey of artificial intelligence approaches in blind source separation[J]. Neurocomputing, 2023, 561: 126895. doi: 10.1016/j.neucom.2023.126895
|
| [8] |
CHANDNA P, CUESTA H, PETERMANN D, et al. A deep-learning based framework for source separation, analysis, and synthesis of choral ensembles[J]. Frontiers in Signal Processing, 2022, 2: 808594. doi: 10.3389/frsip.2022.808594
|
| [9] |
LUO Y, MESGARANI N. Tasnet: time-domain audio separation network for real-time, single-channel speech separation[C]//2018 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Calgary, AB, Canada: IEEE, 2018: 696-700.
|
| [10] |
LUO Y, MESGARANI N. Conv-tasnet: Surpassing ideal time–frequency magnitude masking for speech separation[J]. IEEE/ACM transactions on audio, speech, and language processing, 2019, 27(8): 1256-1266. doi: 10.1109/TASLP.2019.2915167
|
| [11] |
LUO Y, CHEN Z, YOSHIOKA T. Dual-path rnn: efficient long sequence modeling for time-domain single-channel speech separation[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Barcelona, Spain: IEEE, 2020: 46-50.
|
| [12] |
CHEN J, MAO Q, LIU D. Dual-path transformer network: Direct context-aware modeling for end-to-end monaural speech separation[EB/OL]. [2025-11-25] https://arxiv.org/abs/2007.13975.
|
| [13] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Advances in Neural Information Processing Systems, 2017(30): 5998-6008.
|
| [14] |
ZHANG W, LI X, ZHOU A, et al. Underwater acoustic source separation with deep Bi-LSTM networks[C]//2021 4th International Conference on Information Communication and Signal Processing (ICICSP). Shanghai, China: IEEE, 2021: 254-258.
|
| [15] |
HE Q, WANG H, ZENG X, et al. Ship-radiated noise separation in underwater acoustic environments using a deep time-domain network[J]. Journal of Marine Science and Engineering, 2024, 12(6): 885. doi: 10.3390/jmse12060885
|
| [16] |
LIU Y, JIANG L. Passive underwater acoustic signal separation based on feature decoupling dual-path network[EB/OL]. [2025-09-25] https://arxiv.org/abs/2504.08371
|
| [17] |
XU M, LI K, CHEN G, et al. Tiger: Time-frequency interleaved gain extraction and reconstruction for efficient speech separation[EB/OL]. [2025-09-25] https://arxiv.org/abs/2410.01469
|
| [18] |
SAYIGH L, DAHER M A, ALLEN J, et al. The Watkins marine mammal sound database: an online, freely accessible resource[C]//Proceedings of Meetings on Acoustics. Acoustical Society of America. Dublin, Ireland: POMA, 2016: 040013.
|
| [19] |
SANTOS-DOMÍNGUEZ D, TORRES-GUIJARRO S, CARDENAL-LÓPEZ A, et al. ShipsEar: An underwater vessel noise database[J]. Applied Acoustics, 2016, 113: 64-69. doi: 10.1016/j.apacoust.2016.06.008
|
| [20] |
YUREN B. Research on music source separation technology based on deep learning[J]. Computer Science and Application, 2022, 12: 2788. doi: 10.12677/CSA.2022.1212283
|