
| Citation: | ZHANG Guoqing, FENG Yikun, JIN Haobin, GE Qiqian, XU Xiaojun. Numerical Analysis of the Effect of Stern Flap on the Hydrodynamic Performance of Amphibious Vehicles[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0126 |
| [1] |
SHIHUA J, LIEM R, LI Y. An improved experimental framework of amphibious marine vehicle hull hydrodynamics[J]. IEEE Journal of Oceanic Engineering, 2024, 49(1): 80-91. doi: 10.1109/JOE.2023.3303956
|
| [2] |
SUN C L, XU X J, ZOU T A, et al. Investigation on trim control of semi-planning amphibious cargo truck using experimental and numerical approaches[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(3): 1322-1333. doi: 10.1177/09544062211021445
|
| [3] |
LEE D, KO S, PARK J, et al. An experimental analysis of active pitch control for an assault amphibious vehicle considering waterjet-hydrofoil interaction effect[J]. Journal of Marine Science and Engineering, 2021, 9(8): 894. doi: 10.3390/jmse9080894
|
| [4] |
ZHANG G Q, FENG Y K, XU X J. Effect of waterjet propulsion on the hydrodynamic performance of caterpillar track amphibious vehicle[J]. Ocean Engineering, 2024, 309: 118505. doi: 10.1016/j.oceaneng.2024.118505
|
| [5] |
SONG K W, GUO C Y, WANG C, et al. Numerical analysis of the effects of stern flaps on ship resistance and propulsion performance[J]. Ocean Engineering, 2019, 193: 106621(1-19).
|
| [6] |
刘健, 周广礼, 彭嘉澍, 等. 双壳体混合驱动水下滑翔机结构原理及水动力性能研究[J]. 水下无人系统学报, 2024, 32(1): 25-31. doi: 10.11993/j.issn.2096-3920.2023-0150
LIU J, ZHOU G L, PENG J S, et al. Research on structural principle and hydrodynamic performance of double-hull hybrid powered underwater glider[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 25-31. doi: 10.11993/j.issn.2096-3920.2023-0150
|
| [7] |
WANG X Z, LIU L W, ZHANG Z G, et al. Numerical study of the stern flap effect on catamaran’seakeeping characteristic in regular head waves[J]. Ocean Engineering, 2020(206): 107172.
|
| [8] |
潘柏衡, 高霄鹏. 尾插板对滑行艇阻力及纵向稳定性影响试验分析[J]. 船海工程, 2018, 47: 26-28. doi: 10.3963/j.issn.1671-7953.2018.01.006
PAN B H, GAO X P. Experimental study on tail-board influence upon resistance and stability of planing craft[J]. Ship & Ocean Engineering, 2018, 47: 26-28. doi: 10.3963/j.issn.1671-7953.2018.01.006
|
| [9] |
彭锟, 刘影. 尾翼板对轮式两栖车航行阻力特性影响的研究[J]. 车辆与动力技术, 2014, 4: 15-19.
PENG K, LIU Y. Influence of empennage on resistance characteristics of a wheeled amphibious vehicle[J]. Vehicle & Power Technology, 2014, 4: 15-19.
|
| [10] |
GUAN G, TIAN Y, LIANG G P. Multi-objective optimization of a fishery administration vessel's stern flap design based on surrogate model[J]. Ocean Engineering, 2025, 337: 121912. doi: 10.1016/j.oceaneng.2025.121912
|
| [11] |
孙承亮, 徐小军, 唐源江, 等. 分段履带式水陆两栖车减阻增速试验及数值仿真[J]. 国防科技大学学报, 2022, 44(5): 201-208. doi: 10.11887/j.cn.202205022
SUN C L, XU X J, TANG Y J, et al. Experimental and numerical simulation of reducing resistance an increasing speed for a segmented-track amphibious vehicle[J]. Journal of National University of Defense Technology, 2022, 44(5): 201-208. doi: 10.11887/j.cn.202205022
|
| [12] |
王丽丽, 张家旭, 刘涛, 等. 压浪板对两栖车辆水动力特性影响的数值分析[J]. 系统仿真技术, 2018, 14(2): 113-117. doi: 10.3969/j.issn.1673-1964.2018.02.007
WANG L L, ZHANG J X, LIU T, et al. Numerical analysis on effect of wave suppression plate on hydrodynamical characteristics of amphibious vehicle[J]. System Simulation Technology, 2018, 14(2): 113-117. doi: 10.3969/j.issn.1673-1964.2018.02.007
|
| [13] |
SONG K W, GUO C Y, GONG J, et al. Influence of interceptors, stern flaps, and their combinations on the hydrodynamic performance of a deep-vee ship[J]. Ocean Engineering, 2018(170): 306-320. doi: 10.1016/j.oceaneng.2018.10.048
|
| [14] |
郑义, 董文才, 姚朝帮, 等. 排水型深V船系列模型尾板减阻试验研究[J]. 上海交通大学学报, 2011, 45(4): 475-480. doi: 10.16183/j.cnki.jsjtu.2011.04.007
ZHENG Y, DONG W C, YAO C B, et al. Experimental study on resistance reduction of displacement type deep-V hull model using stern flap[J]. Journal of Shanghai Jiao tong University, 2011, 45(4): 475-480. doi: 10.16183/j.cnki.jsjtu.2011.04.007
|
| [15] |
ZHANG G Q, WANG J C, FENG Y K, et al. Experimental and numerical investigation on the hydrodynamic performance of an amphibious vehicle under the interaction of traveling mechanism mudguard and waterjet propulsor duct[J]. Ocean Engineering, 2025(340): 122426. doi: 10.1016/j.oceaneng.2025.122426
|
| [16] |
SUN C L, XU X J, WANG L H, et al. Research on hydrodynamic performance of a blended wheel-track amphibious truck using experimental and simulation approaches[J]. Ocean Engineering, 2021(228): 108969. doi: 10.1016/j.oceaneng.2021.108969
|
| [17] |
BI X S, SHEN H L, ZHOU J, et al. Numerical analysis of the influence of fixed hydrofoil installation position on seakeeping of the planing craft[J]. Applied Ocean Research, 2019(90): 101863. doi: 10.1016/j.apor.2019.101863
|
| [18] |
FENG Y K, ZHANG G Q, WANG J C, et al. Numerical investigation of the hydrodynamic characteristics of a light high-speed amphibious vehicle in still water under oblique inflow conditions[J]. Physics of Fluids, 2025, 37(4): 047150 doi: 10.1063/5.0271256
|
| [19] |
冯亿坤. 尾鳍与胸鳍联合推进的仿生鱼自主游动数值模拟研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
|
| [20] |
毕明琪. 多船体编队航行水动力性能数值与试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2024.
|