• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Turn off MathJax
Article Contents
LIU Ping, HUANG Jiahao, WANG Xinggang, ZHAO Junqi, ZENG Mengcheng, YAN Zhi, XIONG Yongliang. Rapid prediction and numerical verification of high-speed water-entry impact response of spherical-nosed cone[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0116
Citation: LIU Ping, HUANG Jiahao, WANG Xinggang, ZHAO Junqi, ZENG Mengcheng, YAN Zhi, XIONG Yongliang. Rapid prediction and numerical verification of high-speed water-entry impact response of spherical-nosed cone[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0116

Rapid prediction and numerical verification of high-speed water-entry impact response of spherical-nosed cone

doi: 10.11993/j.issn.2096-3920.2025-0116
  • Received Date: 2025-09-02
  • Accepted Date: 2025-10-20
  • Rev Recd Date: 2025-10-04
  • Available Online: 2026-01-14
  • Aiming at the complex physical phenomena of spherical-nosed cone across media water entry, this study develops a rapid prediction model for water-entry impact overload of spherical-nosed cone based on water-entry dynamics and exact geometric characterization method. Based on water-entry dynamics of the projectile, for typical water entry stages, the rapid predicting model incorporates the influence of added mass to, obtain ideal fluid forces, while viscous fluid forces are obtained through force analysis of cross-sectional slice analysis of the submerged projectile. By integrating the ideal fluid forces and viscous fluid forces of each slice along the axial direction of the structural body, multi-stage dynamic equations governing the water entry process of spherical-nosed cone obtained finally. To verify the validity of the proposed model, numerical experiments employ multiphase flow model, k-ε turbulence model and overlapping mesh method. Based on the CFD, high-speed water entry process of conical-nose projectiles with 5°–15° angles and 50–90°(vertical) impact angles into quiescent water from air is investigate, then high-speed water entry law of the projectile is obtained. By comparing with the results from numerical simulations, it is demonstrated that the rapid prediction model could accurately predict the impact loads-as well as the occurrence of projectiles entering water, while achieving a 2-order-of-magnitude improvement in computational efficiency over conventional CFD methods, making it suitable for rapid assessment in the field of engineering.

     

  • loading
  • [1]
    LESSIA A W. A review of laminated composite plate buckling[J]. Applied Mechanics Reviews, 1987, 40(5): 575-591. doi: 10.1115/1.3149534
    [2]
    张阿漫, 明付仁, 刘云龙, 等. 水下爆炸载荷特性及其作用下的舰船毁伤与防护研究综述[J]. 中国舰船研究, 2023, 18(3): 139-154.

    ZHANG A M, MING F R, LIU Y L, et al. Review of research on underwater explosion related to load characteristics and ship damage and protection[J]. Chinese Journal of Ship Research, 2023, 18(3): 139-154.
    [3]
    王余, 熊永亮, 田轩麾, 等. 不同头型回转体高速入水运动过程对比研究[J]. 水下无人系统学报, 2024, 32(3): 451-462.

    WANG Y, XIONG Y K, TIAN X H, et al. Comparison of high-speed water entry movement process of axisymmetric bodies with different head shapes[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 451-462.
    [4]
    WORTHINGTON A M, COLE R S. Impact with a liquid surface studied by the aid ofinstataneous photography[J]. Philosophical Transactions of the Royal Society, 1900, 194(A): 175-200.
    [5]
    VON K T. The impact on seaplane floats during landing[R]. National Advisory Committee for Aeronautics, 1929: 309-313.
    [6]
    WAGNER H. Phenomena associated with impacts and sliding on liquid surfaces[J]. Journal of Applied Mathematics and Mechanics, 1932, 12(4): 193-215.
    [7]
    FALTINSEN O M, CHEZHIAN M. A generalized Wagner method for three-dimensional slamming[J]. Journal of Ship Research, 2005, 49(4): 279-287.
    [8]
    ZHAO R, FALTINSEN O. Water entry of two-dimensional bodies[J]. Journal of Fluid Mechanics, 1993, 246: 593-612. doi: 10.1017/S002211209300028X
    [9]
    TASSIN A, JACQUES N, NEME A, et al. An efficient numerical method for the three dimensional Wagner problem[C]//Proceeding of the 25th International Workshop on Water Waves and Floating Bodies IWWWFB. Harbin, China: IWWWFB, 2010: 2-3.
    [10]
    IRANMANESH A, PASSANDIDEH F M. A three-dimensional numerical approach on water entry of a horizontal circular cylinder using the volume of fluid technique[J]. Ocean Engineering, 2017, 130: 557-566. doi: 10.1016/j.oceaneng.2016.12.018
    [11]
    NGUYEN V T, VU D T, PARK W G, et al. Navier–Stokes solver for water entry bodies with moving Chimera grid method in 6DOF motions[J]. Computers & Fluids, 2016, 140: 19-38. doi: 10.1016/j.compfluid.2016.09.005
    [12]
    MIRZAII I, PASSANDIDEH F M. Modeling free surface flows in presence of an arbitrary moving object[J]. International Journal of Multiphase Flow, 2012, 39: 216-226. doi: 10.1016/j.ijmultiphaseflow.2011.08.005
    [13]
    张岳青, 白治宁, 曾小凡, 等. 楔形和弧形结构入水冲击响应研究[J]. 船舶力学, 2020, 24(3): 400-408.

    ZHANG Y Q, BAI Z N, ZENG X F, et al. Study of water impact response of wedge- and arc-shaped structures[J]. Journal of Ship Mechanics, 2020, 24(3): 400-408.
    [14]
    石汉成, 蒋培, 程锦房, 等. 头部形状对水雷入水载荷及水下弹道影响的数值仿真分析[J]. 舰船科学技术, 2010(10): 104-107.

    SHI H C, JIANG P, CHENG J F, et al. Researh on numerical simulation of mine water-entry impact acceleration and underwater ballistic trajectory under the different mine’s head shape[J]. Ship Science and Technology, 2010(10): 104-107.
    [15]
    朱珠, 袁绪龙. 柱体高速入水冲击载荷与空泡特性[J]. 计算机仿真, 2014, 31(3): 29-33. doi: 10.3969/j.issn.1006-9348.2014.03.007

    ZHU Z, YUAN X L. High-speed water-entry impact and cavity characters of cylinder[J]. Computer Simulation, 2014, 31(3): 29-33. doi: 10.3969/j.issn.1006-9348.2014.03.007
    [16]
    侯昭, 孙铁志, 张桂勇, 等. 回转体倾斜入水空泡试验及六自由度数值计算研究[J]. 宇航总体技术, 2017, 1(4): 38-45.

    HOU Z, SUN T Z, ZHANG G Y, et al. Experimental investigation and 6-DOF simulation of oblique waterentry cavity of revolution body[J]. Astronautical Systems Engineering Technology, 2017, 1(4): 38-45.
    [17]
    王永虎. 空投雷弹入水冲击头型特性参数分析[J]. 航空计算技术, 2010, 40(06): 14-17.

    WANG Y H. Nose performance description coefficience of air borne torpedo and deep-mine during water-entry impact[J]. Aeronautical Computing Technique, 2010, 40(06): 14-17.
    [18]
    龙腾, 梁津铭, 张宝收, 等. 跨介质飞行器串行入水流场演化与运动特性研究[J]. 机械工程学报, 2025, 1-10.

    LONG T, LIANG J M, ZHANG B S, et al. Study on the motion characteristics and water field evolution of cross-medium aircrafts entry water in tandem[J]. Journal of Mechanical Engineering, 2025, 1-10.
    [19]
    任泽宇, 王小刚, 孔德才, 等. 跨介质飞行器倾斜入水弹道拉平特性研究[J]. 宇航总体技术, 2025, 9(02): 525-58.

    REN Z Y, WANG X G, KONG D C, et al. Study on the flattening characteristics of oblique water entry trajectory of trans-media aircrafts[J]. Astronautical Systems Engineering Technology, 2025, 9(02): 525-58.
    [20]
    彭睿哲, 冯和英, 向敏, 等. 头部喷气式超空泡航行体垂直入水性能研究[J]. 振动与冲击, 2024, 43(20): 238-246. doi: 10.13465/j.cnki.jvs.2024.20.025

    PENG R Z, FENG H Y, XIANG M, et al. A study on the vertical water entry performance of a head jet supercavitating navigation body[J]. Journal of Vibration and Shock, 2024, 43(20): 238-246. doi: 10.13465/j.cnki.jvs.2024.20.025
    [21]
    KHABAKHPASHEVA T I, KOROBKIN A A, MALENICA S, et al. Water entry of an elastic conical shell[J]. Journal of Fluid Mechanics, 2024, 980: A34. doi: 10.1017/jfm.2024.17
    [22]
    LIU X, LIU W, MING F, et al. Investigation of free surface effect on the cavity expansion and contraction in high-speed water entry[J]. Journal of Fluid Mechanics, 2024, 988: A53. doi: 10.1017/jfm.2024.473
    [23]
    GUO Z, ZHANG W, XIAO X, et al. An investigation into horizontal water entry behaviors of projectiles with different nose shapes[J]. International Journal of Impact Engineering, 2012, 49: 43-60. doi: 10.1016/j.ijimpeng.2012.04.004
    [24]
    严卫生. 鱼雷航行力学[M]. 西安: 西北工业大学出版社, 2005.
    [25]
    徐宣志. 鱼雷力学[M]. 北京: 国防工业出版社, 1992.
    [26]
    ЛОГВИНООВЧ Г В. Hydrodynamics of free-boundary flows[M]. Shanghai: Shanghai Jiao Tong University Press. 2012.
    [27]
    李永利, 冯金富, 齐铎, 等. 航行器低速斜入水运动规律[J]. 北京航空航天大学学报, 2016, 42(12): 2698-2708. doi: 10.13700/j.bh.1001-5965.2016.0153

    LI Y L, FENG J F, QI D, et al. Movement rule of a vehicle obliquely water-entry at low speed[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2698-2708. doi: 10.13700/j.bh.1001-5965.2016.0153
    [28]
    王永虎, 石秀华. 空投鱼雷斜入水冲击动力建模及仿真分析[J]. 计算机仿真, 2009, 26(1): 46-49.

    WANG Y H, SHI X H. Modeling and simulation analysis of oblique water-entry impact dynamics of air-dropped torpedo[J]. Computer Simulation, 2009, 26(1): 46-49.
    [29]
    HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. doi: 10.1016/0021-9991(81)90145-5
    [30]
    薛景嘉, 左婧滢, 韦健飞, 等. 基于雷诺应力输运模型的气膜冷却效率预测标通量模型修正研究[J]. 推进技术, 2025, 46(8): 203-214.

    XUE J J, ZUO Q Y, WEI J F, et al. Scalar flux models modification for prediction of film cooling efficiency based on Reynolds stress model[J]. Journal of Propulsion Technology, 2025, 46 (8): 203-214.
    [31]
    金亚昆. 桥墩局部冲刷坑发展中的三维紊流场研究[D]. 北京: 北京交通大学, 2014.
    [32]
    陈宇翔. 物体穿过自由表面的多相流体动力学问题研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
    [33]
    DYMOND J H, MALHOTRA R. The Tait equation: 100 years on[J]. International Journal of Thermophysics, 1988, 9(6): 941-951. doi: 10.1007/BF01133262
    [34]
    刘文韬. 细长航行体高速入水冲击载荷与结构响应机理研究[D]. 哈尔滨: 哈尔滨工程大学, 2024.
    [35]
    孙光耀. 多种头型下细长航行体高速入水数值模拟研究[D]. 重庆: 重庆交通大学, 2024.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)

    Article Metrics

    Article Views(21) PDF Downloads(13) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return