
| Citation: | MA Zhixun, TANG Ning, LI Xuan, HAO Chengpeng. Ship Radiated Noise Recognition Based on Dual Low-Rank Adaptation Training[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0114 |
| [1] |
BROOKER A, HUMPHREY V. Measurement of radiated underwater noise from a small research vessel in shallow water[J]. Ocean Engineering, 2016, 120: 182-189. doi: 10.1016/j.oceaneng.2015.09.048
|
| [2] |
FILLINGER L, DE THEIJE P, ZAMPOLLI M, et al. Towards a passive acoustic underwater system for protecting harbours against intruders[C]//2010 International WaterSide Security Conference. Carrara, Italy: IEEE, 2010: 1-7.
|
| [3] |
王培兵, 彭圆. 深度学习在水声目标识别中的应用研究[J]. 数字海洋与水下攻防, 2020, 3(1): 11-17.
WANG P B, PENG Y. Research on application of deep learning in underwater acoustic target recognition[J]. Digital Ocean & Underwater Warfare, 2020, 3(1): 11-17.
|
| [4] |
张奇, 笪良龙, 王超, 等. 基于深度学习的水声被动目标识别研究综述[J]. 电子与信息学报, 2023, 45(11): 4190-4202.
ZHANG Q, DA L L, WANG C, et al. An overview on underwater acoustic passive target recognition based on deep learning[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4190-4202.
|
| [5] |
刘嘉尉. 基于改进型ResNet模型的水声目标识别方法研究[D]. 延吉: 延边大学, 2024.
|
| [6] |
薛灵芝, 曾向阳. 动态水声环境中SE_ResNet模型目标识别方法[J]. 哈尔滨工程大学学报, 2023, 44(6): 939-946.
XUE L Z, ZENG X Y. Target recognition method of SE_ResNet model in dynamic underwater acoustic environment[J]. Journal of Harbin Engineering University, 2023, 44(6): 939-946.
|
| [7] |
XU Y C, CAI Z M, KONG X P. Improved pitch shifting data augmentation for ship-radiated noise classification[J]. Applied acoustics, 2023, 211: 109468. doi: 10.1016/j.apacoust.2023.109468
|
| [8] |
李理, 李向欣, 殷敬伟. 基于生成对抗网络的船舶辐射噪声分类方法研究[J]. 电子与信息学报, 2022, 44(6): 1974-1983.
LI L, LI X X, YIN J W. Research on classification algorithm of ship radiated noise data based on generative adversarial network[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1974-1983.
|
| [9] |
JIANG Z, ZHAO C, WANG H Y. Classification of underwater target based on S-ResNet and modified DCGAN models[J]. Sensors, 2022, 22(6): 2293. doi: 10.3390/s22062293
|
| [10] |
XU J, XIE Y, WANG W C. Underwater acoustic target recognition based on smoothness-inducing regularization and spectrogram-based data augmentation[J]. Ocean Engineering, 2023, 281: 114926. doi: 10.1016/j.oceaneng.2023.114926
|
| [11] |
CUI X D, HE Z F, XUE Y T, et al. Few-shot underwater acoustic target recognition using domain adaptation and knowledge distillation[J]. IEEE Journal of Oceanic Engineering, 2025, 50(2): 637-653. doi: 10.1109/JOE.2025.3532036
|
| [12] |
LI Z Y, XIANG S C, YU T, et al. Oceanship: A large-scale dataset for underwater audio target recognition[C]//International Conference on Intelligent Computing. Singapore: Springer Nature Singapore, 2024: 475-486.
|
| [13] |
GONG Y, CHUNG Y A, GLASS J. PSLA: Improving audio tagging with pretraining, sampling, labeling, and aggregation[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 3292-3306. doi: 10.1109/TASLP.2021.3120633
|
| [14] |
HU E, SHEN Y L, WALLIS P, et al. LoRA: Low-rank adaptation of large language models[C]//Proceedings of the International Conference on Learning Representations. Online: ICLR, 2021: 1-26.
|
| [15] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, NV, USA: IEEE, 2016: 770-778.
|
| [16] |
ZHANG H Y, CISSÉ M, DAUPHIN Y, et al. Mixup: Beyond empirical risk minimization[C]//Proceedings of the International Conference on Learning Representations. Online: ICLR, 2017: 1-11.
|
| [17] |
SANTOS-DOMÍNGUEZ D, TORRES-GUIJARRO S, CARDENAL-LÓPEZ A, et al. ShipsEar: An underwater vessel noise database[J]. Applied Acoustics, 2016, 113: 64-69. doi: 10.1016/j.apacoust.2016.06.008
|
| [18] |
IRFAN M, ZHANG J B, ALI S, et al. DeepShip: An underwater acoustic benchmark dataset and a separable convolution based autoencoder for classification[J]. Expert Systems with Applications, 2021, 183: 115270. doi: 10.1016/j.eswa.2021.115270
|
| [19] |
XIE Y, REN J W, XU J. Unraveling complex data diversity in underwater acoustic target recognition through convolution-based mixture of experts[J]. Expert Systems with Applications, 2024, 249: 123431. doi: 10.1016/j.eswa.2024.123431
|