• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
QIANG Yiming, CHEN Yihong, PEI Yuqing, PANG Yezhen, XIE Shuo. Application of ensemble learning models on ship radiation noise prediction[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0111
Citation: QIANG Yiming, CHEN Yihong, PEI Yuqing, PANG Yezhen, XIE Shuo. Application of ensemble learning models on ship radiation noise prediction[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0111

Application of ensemble learning models on ship radiation noise prediction

doi: 10.11993/j.issn.2096-3920.2025-0111
  • Received Date: 2025-08-22
  • Accepted Date: 2025-09-15
  • Rev Recd Date: 2025-09-12
  • Available Online: 2025-11-26
  • Ship radiation noise induced by vibration is a major concern for the comfort and stealthy of commercial ships and warships. An accurate prediction for the distribution and sound level of ship radiation noise can assist effective ship designs to lower vibration and noise. In order to avoid constructing complex functions from multiple vibration sources, this paper used Random Forest(RF) and Gradient Boosting Decision Tree(GBDT) methods to build surrogate models to quickly predict the 1/3 rd octave noise level of different working conditions and measuring points. Ensemble learning models have a better performance on 3 out of 4 conditions compared to Bayesian Regression, with MAE prediction error less than 5 dB. This paper also proposed an optimized version of above models that combines ensemble learning methods and linear regression, which increased prediction accuracy by 1.5 dB. The proposed ensemble learning methods could be an efficient tool for ship radiation noise analysis.

     

  • loading
  • [1]
    HODGES C H, WOODHOUSE J. Theories of noise and vibration transmission in complex structures[J]. Reports on Progress in Physics, 1986, 49(2): 107-170. doi: 10.1088/0034-4885/49/2/001
    [2]
    庞业珍, 裴雨晴. 基于船上振动噪声监测的水下辐射噪声实时预报研究进展[J]. 隐身技术, 2023(1): 1-10.

    PANG Y Z, PEI Y Q. Research progress on real-time prediction of underwater radiated noise based on shipboard vibration and noise monitoring[J]. Stealth Technology, 2023(1): 1-10 (in Chinese).
    [3]
    王学杰, 单衍贺, 秦新华, 等. 舰船水下辐射噪声快速预报方法[J]. 噪声与振动控制, 2018, 38(3): 1-5.

    WANG X J, SHAN Y H, QIN X H, et al. Rapid prediction method of ship underwater radiated noise[J]. Noise and Vibration Control, 2018, 38(3): 1-5 .
    [4]
    庞业珍, 俞孟萨. 基于多距离声阵实测回归传播损失的浅水域水下辐射噪声源级测量方法[J]. 船舶力学, 2023, 27(4): 598-606.

    PANG Y Z, YU M S. Measurement method of underwater radiated noise source level in shallow water based on multi-range hydrophone array measurement and regression propagation loss[J]. Journal of Ship Mechanics, 2023, 27(4): 598-606 .
    [5]
    CINTOSUN E, GILROY L. Estimating ship underwater radiated noise from onboard vibrations[C]//SNAME Maritime Convention. SNAME, Italy: 2021: 1-15.
    [6]
    ZHANG B, XIANG Y, HE P, et al. Study on prediction methods and characteristics of ship underwater radiated noise within full frequency[J]. Ocean Engineering, 2019, 174: 61-70. doi: 10.1016/j.oceaneng.2019.01.028
    [7]
    GUO J, WANG M, KANG Y, et al. Prediction of ship cabin noise based on RBF neural network [J]. Mathematical Problems in Engineering, 2019: 1-12.
    [8]
    徐源超, 蔡志明, 孔晓鹏, 等. 船舶辐射噪声分类卷积神经网络的可视化分析和卷积核剪枝[J]. 电子与信息学报, 2023, 45(1): 1-9.

    XU Y C, CAI Z M, KONG X P, et al. Visualization analysis and kernel pruning of CNN for ship radiated noise classification[J]. Journal of Electronics & Information Technology, 2023, 45(1): 1-9.
    [9]
    SHIKI T. Estimation of prediction error by using K-fold cross-validation[J]. Statistics and Computing, 2011, 21(2): 137-146. doi: 10.1007/s11222-009-9153-8
    [10]
    DIETTERICH T G. Ensemble learning[J]. The Handbook of Brain Theory and Neural Networks, 2002, 2(1): 110-125.
    [11]
    DONG X, YU Z, CAO W, et al. A survey on ensemble learning[J]. Frontiers of Computer Science, 2020, 14(2): 241-258. doi: 10.1007/s11704-019-8208-z
    [12]
    WEBB G I, ZHENG Z. Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(8): 980-991. doi: 10.1109/TKDE.2004.29
    [13]
    BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. doi: 10.1023/A:1018054314350
    [14]
    SCORNET E, BIAU G. A random forest guided tour[J]. Test, 2016, 25(2): 197-227. doi: 10.1007/s11749-016-0481-7
    [15]
    SCHAPIRE R E. The strength of weak learnability[J]. Machine Learning, 1990, 5(2): 197-227. doi: 10.1023/A:1022648800760
    [16]
    FRIEDMAN J, HASTIE T, TIBSHIRANI R. The elements of statistical learning[M]. Beijing: World Publishing Corporation, 2009: 1-745.
    [17]
    杨欢, 吴震, 张鹏, 等. 侧信道多层感知机攻击中基于贝叶斯优化的超参数寻优[J]. 计算机应用与软件, 2021, 38(5): 323-330.

    YANG H, WU Z, ZHANG P, et al. Bayesian optimization based hyperparameter search in side-channel attacks against multilayer perceptron[J]. Computer Applications and Software, 2021, 38(5): 323-330.
    [18]
    RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Cambridge: MIT Press, 2006: 1-248.
    [19]
    SNOEK J, LAROCHELLE H, ADAMS R P. Practical Bayesian optimization of machine learning algorithms [J]. Advances in Neural Information Processing Systems, 2012: 4.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article Views(11) PDF Downloads(2) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return