Citation: | WAN Xing-fu, ZHOU Xin-yue, WANG Si-yuan, WU Meng-Wei, XU Peng, XU Minyi. Biomimetic Seal Whisker Sensors for Underwater Flow Field Sensing Technologies: A Review[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0102 |
[1] |
蔡荣捷. 海洋技术的进展: 从声学突破到生物拟态工程的应用[J]. 科学咨询, 2025(1): 51-54.
CAI R J. Advances in marine technology: From acoustic breakthroughs to application of biomimetics[J]. Scientific Consult, 2025(1): 51-54.
|
[2] |
张宇, 王昊, 相城, 等. 面向观测网络供电的水下能量捕获技术研究进展[J]. 水下无人系统学报, 2023, 31(1): 86-107.
ZHANG Y, WANG H, XIANG C, et al. Recent progress on underwater energy harvesting technology for powering observation networks[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 86-107.
|
[3] |
周正干, 李文涛, 李洋, 等. 相控阵超声水浸C扫描自动检测系统的研制[J]. 机械工程学报, 2017, 53(12): 28-34. doi: 10.3901/JME.2017.12.028
ZHOU Z G, LI W T, LI Y, et al. Development of ultrasonic phased array immersion C-scan automatic detection system[J]. Journal of Mechanical Engineering, 2017, 53(12): 28-34. doi: 10.3901/JME.2017.12.028
|
[4] |
吴青山, 翁俊杰, 郭斯琳, 等. 水下仿生柔性传感技术在流场感知中的进展与挑战[J]. 测控技术, 2024, 43(10): 1-9,16.
WU Q S, WENG J J, GUO S L, et al. Progress and challenges of underwater biomimetic flexible sensing tecchnology in flow field perception[J]. Measurement & Control Technology, 2024, 43(10): 1-9,16.
|
[5] |
谢鸥, 孙兆光, 沈灿, 等. 基于仿鱼人工侧线的水下静态目标主动感知方法研究[J]. 传感技术学报, 2024, 37(10): 1786-1794.
XIE O, SUN Z G, SHEN C, et al. Study on the underwater static target active perception method based in fish-like artificial lateral line[J]. Chinese Journal of Sensors and Actuators, 2024, 37(10): 1786-1794.
|
[6] |
KRIEG M, NELSON K, MOHSENI K. Distributed sensing for fluid disturbance compensation and motion control of intelligent robots[J]. Nature Machine Intelligence, 2019, 1(5): 216-224. doi: 10.1038/s42256-019-0044-1
|
[7] |
BLECKMANN H, KLEIN A, MEYER G. Nature as a model for technical sensors[M]. Vienna: Springer, 2012: 3-18.
|
[8] |
TRIANTAFYLLOU M S, WEYMOUTH G D, MIAO J. Biomimetic survival hydrodynamics and flow sensing[J]. Annual Review of Fluid Mechanics, 2016, 48: 1-24. doi: 10.1146/annurev-fluid-122414-034329
|
[9] |
Kroese A B, VAN J M, VAN D B J. Frequency response of the lateral-line organ of xenopus laevis[J]. Pflügers Archiv, 1978, 375(2): 167-175.
|
[10] |
SOARES D. An ancient sensory organ in crocodilians[J]. Nature, 2002, 417(6886): 241-242. doi: 10.1038/417241a
|
[11] |
WILLIAMS T M, KOOYMAN G L. Swimming performance and hydrodynamic characteristics of harbor seals phoca vitulina[J]. Physiological Zoology, 1985, 58(5): 576-589. doi: 10.1086/physzool.58.5.30158584
|
[12] |
PERRIN W F, WÜRSIG B, THEWISSEN J G M. Encyclopedia of Marine Mammals[M]. Pittsburgh: Academic Press, 2009.
|
[13] |
KOTTAPALLI A G P, ASADNIA M, MIAO J, et al. Biomimetic microsensors inspired by marine life[M]. Cham, Switzerland: Springer Cham, 2016.
|
[14] |
DEHNHARDT G, MAUCK B, BLECKMANN H. Seal whiskers detect water movements[J]. Nature, 1998, 394(6690): 235-236. doi: 10.1038/28303
|
[15] |
马峰, 张静骁, 贾曦雨, 等. 基于水下运动目标流场信息的仿生探测原理[J]. 水下无人系统学报, 2014, 22(6): 436-441.
MA F, ZHANG J X, JIA X Y, et al. Principle of biomimetic detection based on flow field information of underwater moving object[J]. Journal of Unmanned Undersea Systems, 2014, 22(6): 436-441.
|
[16] |
翟宇凡, 熊明磊, 王晨, 等. 水下仿生侧线感知研究进展[J]. 水下无人系统学报, 2023, 31(1): 50-67.
ZHAI Y F, XIONG M L, WANG C, et al. A review on underwater perception based on bio-inspired artificial lateral line system[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 50-67.
|
[17] |
胡桥, 刘钰, 赵振轶, 等. 水下无人集群仿生人工侧线探测技术研究进展[J]. 水下无人系统学报, 2019, 27(2): 114-122.
HU Q, LIU Y, ZHAO Z Y, et al. Research advances of biomimetic artificial lateral line detection technology for unmanned underwater swarm[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 114-122.
|
[18] |
BEEM H R, TRIANTAFYLLOU M S. Wake-induced ‘slaloming’ response explains exquisite sensitivity of seal whisker-like sensors[J]. Journal of Fluid Mechanics, 2015, 783: 306-322. doi: 10.1017/jfm.2015.513
|
[19] |
MUTHURAMALINGAM M, BRUECKER C. Seal and sea lion whiskers detect slips of vortices similar as rats sense textures[J]. Scientific Reports, 2019, 9(1): 12808. doi: 10.1038/s41598-019-49243-5
|
[20] |
李原正, 王天润, 关堂镇, 等. 基于液态金属型摩擦纳米发电的水下仿生触须传感器[J]. 水下无人系统学报, 2024, 32(5): 794-800.
LI Y Z, WANG T R, GUAN T Z, et al. Underwater biomimetic whisker sensor based on liquid metal and triboelectric nanogenerator[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 794-800.
|
[21] |
DIAMOND M E, ARABZADEH E. Whisker sensory system – From receptor to decision[J]. Progress in Neurobiology, 2013, 103: 28-40. doi: 10.1016/j.pneurobio.2012.05.013
|
[22] |
PRESCOTT T J, DIAMOND M E, WING A M. Active touch sensing[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366(1581): 2989-2995. doi: 10.1098/rstb.2011.0167
|
[23] |
AU W W L, BENOIT-BIRD K J, KASTELEIN R A. Modeling the detection range of fish by echolocating bottlenose dolphins and harbor porpoises[J]. The Journal of the Acoustical Society of America, 2007, 121(6): 3954-3962. doi: 10.1121/1.2734487
|
[24] |
NEWBY T C, HART F M, ARNOLD R A. Weight and Blindness of Harbor Seals[J]. Journal of Mammalogy, 1970, 51(1): 152.
|
[25] |
HYVÄRINEN H. Diving in darkness: Whiskers as sense organs of the ringed seal(Phoca hispida saimensis)[J]. Journal of Zoology, 1989, 218(4): 663-678. doi: 10.1111/j.1469-7998.1989.tb05008.x
|
[26] |
RENOUF D. Fishing in Captive Harbour Seals (Phoca vitulina concolor): A possible role for vibrissae[J]. Netherlands Journal of Zoology, 1979, 30(3): 504-509. doi: 10.1163/002829680X00122
|
[27] |
RENOUF D. Preliminary measurements of the sensitivity of the vibrissae of harbour seals(Phoca vitulina) to low frequency vibrations[J]. Journal of Zoology, 1979, 188(4): 443-450. doi: 10.1111/j.1469-7998.1979.tb03428.x
|
[28] |
DEHNHARDT G, MAUCK B, HANKE W, et al. Hydrodynamic trail-following in harbor seals(Phoca vitulina)[J]. Science, 2001, 293(5527): 102-104. doi: 10.1126/science.1060514
|
[29] |
SCHULTE-PELKUM N, WIESKOTTEN S, HANKE W, et al. Tracking of biogenic hydrodynamic trails in harbour seals(Phoca vitulina)[J]. Journal of Experimental Biology, 2007, 210(5): 781-787. doi: 10.1242/jeb.02708
|
[30] |
HANKE W, WITTE M, MIERSCH L, et al. Harbor seal vibrissa morphology suppresses vortex-induced vibrations[J]. Journal of Experimental Biology, 2010, 213(15): 2665-2672. doi: 10.1242/jeb.043216
|
[31] |
SMODLAKA H, GALEX I, PALMER L, et al. Ultrastructural, sensory and functional anatomy of the northern elephant seal(Mirounga angustirostris) facial vibrissae[J]. Anatomia, Histologia, Embryologia, 2017, 46(5): 487-496. doi: 10.1111/ahe.12293
|
[32] |
ZHANG P, WANG S, JIANG J, et al. A fiber-optic extrinsic fabry–perot hydrophone based on archimedes spiral-type sensitive diaphragm[J]. IEEE Sensors Journal, 2022, 22(23): 22654-22660. doi: 10.1109/JSEN.2022.3215157
|
[33] |
ZHAO C, JIANG Q, LI Y. A novel biomimetic whisker technology based on fiber Bragg grating and its application[J]. Measurement Science and Technology, 2017, 28(9): 095104. doi: 10.1088/1361-6501/aa7d36
|
[34] |
KENT T A, KIM S, KORNILOWICZ G, et al. WhiskSight: A reconfigurable, vision-based, optical whisker sensing array for simultaneous contact, airflow, and inertia stimulus detection[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3357-3364. doi: 10.1109/LRA.2021.3062816
|
[35] |
WANG J, YANG X, WANG A, et al. Bio-inspired fiber attitude sensor for direction-distinguishable pitching and rolling sensing[J]. Journal of Lightwave Technology, 2023, 41(21): 6844-6851. doi: 10.1109/JLT.2023.3294956
|
[36] |
WANG J, WANG A, NIU C, et al. Bioinspired whisker sensor based on orthometric FBGs for underwater applications[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1-9.
|
[37] |
ZHANG Y, YAN S, WEI Z, et al. A small-scale, rat-inspired whisker sensor for the perception of a biomimetic robot: Design, fabrication, modeling, and experimental characterization[J]. IEEE Robotics & Automation Magazine, 2022, 29(4): 115-126.
|
[38] |
AHMAD RIDZUAN N A, MIKI N. Tooth-inspired tactile sensor for detection of multidirectional force[J]. Micromachines, 2019, 10(1): 18.
|
[39] |
XIE R, ZHU J, WU H, et al. 3D-conductive pathway written on leather for highly sensitive and durable electronic whisker[J]. Journal of Materials Chemistry C, 2020, 8(28): 9748-9754. doi: 10.1039/D0TC00786B
|
[40] |
LIN C W, ZHAO Z, KIM J, et al. Pencil drawn strain gauges and chemiresistors on paper[J]. Scientific Reports, 2014, 4(1): 3812. doi: 10.1038/srep03812
|
[41] |
WAKABAYASHI S, YAMAGUCHI T, ARIE T, et al. Out-of-plane electric whiskers based on nanocarbon strain sensors for multi-directional detection[J]. Carbon, 2020, 158: 698-703. doi: 10.1016/j.carbon.2019.11.042
|
[42] |
ZHENG X, KAMAT A M, KRUSHYNSKA A O, et al. 3D printed graphene piezoresistive microelectromechanical system sensors to explain the ultrasensitive wake tracking of wavy seal whiskers[J]. Advanced Functional Materials, 2022, 32(47): 2207274. doi: 10.1002/adfm.202207274
|
[43] |
VALDIVIA Y ALVARADO P, SUBRAMANIAM V, TRIANTAFYLLOU M. Design of a bio-inspired whisker sensor for underwater applications[C]//2012 IEEE SENSORS. Taipei, China: IEEE, 2012: 1-4.
|
[44] |
HUA Q, LIU H, ZHAO J, et al. Bioinspired electronic whisker arrays by pencil-drawn paper for adaptive tactile sensing[J]. Advanced Electronic Materials, 2016, 2(7): 1600093. doi: 10.1002/aelm.201600093
|
[45] |
LIU Z, QI D, LEOW W R, et al. 3D-structured stretchable strain sensors for out-of-plane force detection[J]. Advanced Materials, 2018, 30(26): 1707285. doi: 10.1002/adma.201707285
|
[46] |
DUSEK J E, TRIANTAFYLLOU M S, LANG J H. Piezoresistive foam sensor arrays for marine applications[J]. Sensors and Actuators A: Physical, 2016, 248: 173-183. doi: 10.1016/j.sna.2016.07.025
|
[47] |
STOCKING J B, EBERHARDT W C, SHAKHSHEER Y A, et al. A capacitance-based whisker-like artificial sensor for fluid motion sensing[C]//2010 IEEE Sensors. Waikoloa, USA: IEEE, 2010: 2224-2229.
|
[48] |
ASSAF T, ROSSITER J, PEARSON M. Contact sensing in a bio-inspired whisker driven by electroactive polymer artificial muscles[C]//2013 IEEE Sensors. Baltimore, USA: IEEE, 2013: 1-4.
|
[49] |
FEND M, BOVET S, HAFNER V V. The artificial mouse - a robot with whiskers and vision[C]//In Proceedings of the 35th International Symposium on Robotics(ISR 2004). Paris, France: International Federation of Robotics 2004, 2004.
|
[50] |
EBERHARDT W C, WAKEFIELD B F, MURPHY C T, et al. Development of an artificial sensor for hydrodynamic detection inspired by a seal’s whisker array[J]. Bioinspiration & Biomimetics, 2016, 11(5): 056011.
|
[51] |
DROOGENDIJK H, BRUININK C M, SANDERS R G P, et al. Non-resonant parametric amplification in biomimetic hair flow sensors: Selective gain and tunable filtering[J]. Applied Physics Letters, 2011, 99(21): 213503. doi: 10.1063/1.3663865
|
[52] |
DELAMARE J, SANDERS R, KRIJNEN G. 3D printed biomimetic whisker-based sensor with co-planar capacitive sensing[C]//2016 IEEE Sensors. Orlando, USA: IEEE, 2016: 1-3.
|
[53] |
JIANG Y, LI J, WANG Z, et al. Design and fabrication of an E-whisker using a PVDF ring[J]. Bioinspiration & Biomimetics, 2021, 16(3): 036007.
|
[54] |
BEBEK O, CAVUSOGLU M C. Whisker-like position sensor for measuring physiological motion[J]. IEEE/ASME Transactions on Mechatronics, 2008, 13(5): 538-547. doi: 10.1109/TMECH.2008.2001184
|
[55] |
KOTTAPALLI A G P, ASADNIA M, MIAO J M, et al. Harbor seal whisker inspired flow sensors to reduce vortex-induced vibrations[C]//2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). Estoril, Portugal: IEEE, 2015: 889-892.
|
[56] |
JIANG Y, GUO C, ZHANG Y, et al. Design and fabrication of a four-electrodes PVDF fiber for a flow sensor[J]. IEEE Sensors Journal, 2023, 23(3): 1982-1989. doi: 10.1109/JSEN.2022.3230718
|
[57] |
GUO L, LIU J, WU G, et al. Piezoelectric wavy whisker sensor for perceiving underwater vortex from a bluff body[J]. Sensors and Actuators A: Physical, 2024, 365: 114875. doi: 10.1016/j.sna.2023.114875
|
[58] |
JU F, LING S F. Sensing fluid viscosity and density through mechanical impedance measurement using a whisker transducer[J]. Measurement Science and Technology, 2013, 24(5): 055105. doi: 10.1088/0957-0233/24/5/055105
|
[59] |
WANG D, LI Y, HU X, et al. Electrohydrodynamic jet printed bioinspired piezoelectric hair-like sensor for high-sensitivity air-flow detection[J]. Smart Materials and Structures, 2023, 32(9): 095020. doi: 10.1088/1361-665X/acec21
|
[60] |
WANG X, XU P, MA Z, et al. A bio-inspired whisker sensor based on triboelectric nanogenerators[C]//2020 35th Youth Academic Annual Conference of Chinese Association of Automation(YAC). Zhanjiang, China: IEEE, 2020: 105-109.
|
[61] |
WANG X, XU P, LIU J, et al. Semi-flexible bionic whisker sensor based on triboelectric nanogenerators[C]//2021 International Conference on Artificial Intelligence and Electromechanical Automation(AIEA). Guangzhou, China: IEEE, 2021: 194-198.
|
[62] |
PUNEETHA P, MALLEM S P R, PARK S C, et al. Ultra-flexible graphene/nylon/PDMS coaxial fiber-shaped multifunctional sensor[J]. Nano Research, 2023, 16(4): 5541-5547. doi: 10.1007/s12274-022-5235-0
|
[63] |
YU A, CHEN L, CHEN X, et al. Triboelectric sensor as self-powered signal reader for scanning probe surface topography imaging[J]. Nanotechnology, 2015, 26(16): 165501. doi: 10.1088/0957-4484/26/16/165501
|
[64] |
XU P, WANG X, WANG S, et al. A triboelectric-based artificial whisker for reactive obstacle avoidance and local mapping[J]. Research, 2021, 2021: 9864967.
|
[65] |
LIU J, XU P, ZHENG J, et al. Whisker-inspired and self-powered triboelectric sensor for underwater obstacle detection and collision avoidance[J]. Nano Energy, 2022, 101: 107633. doi: 10.1016/j.nanoen.2022.107633
|
[66] |
AU W W L, BENOIT-BIRD K J, KASTELEIN R, et al. Acoustic basis for fish prey selection by echolocating odontocetes[J]. The Journal of the Acoustical Society of America, 2004, 116(4_Supplement): 2503-2504.
|
[67] |
BEEM H, HILDNER M, TRIANTAFYLLOU M. Calibration and validation of a harbor seal whisker-inspired flow sensor[J]. Smart Materials and Structures, 2012, 22(1): 014012.
|
[68] |
KOTTAPALLI A G P, ASADNIA M, HANS H, et al. Harbor seal inspired MEMS artificial micro-whisker sensor[C]//2014 IEEE 27th International Conference on Micro Electro Mechanical Systems(MEMS). San Francisco, USA: IEEE, 2014: 741-744.
|
[69] |
ALVARADO P V, SUBRAMANIAM V, TRIANTAFYLLOU M. Performance analysis and characterization of bio-inspired whisker sensors for underwater applications[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan: IEEE, 2013: 5956-5961.
|
[70] |
FRIES F, VALDIVIA Y ALVARADO P. Whisker-like sensors with soft resistive follicles[C]//2017 IEEE International Conference on Robotics and Biomimetics(ROBIO). Macau, China: IEEE, 2017: 2038-2043.
|
[71] |
WIESKOTTEN S, DEHNHARDT G, MAUCK B, et al. Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal(Phoca vitulina)[J]. Journal of Experimental Biology, 2010, 213(13): 2194-2200. doi: 10.1242/jeb.041699
|
[72] |
GUL J Z, SU K Y, CHOI K H. Fully 3D printed multi-material soft bio-inspired whisker sensor for underwater-induced vortex detection[J]. Soft Robotics, 2018, 5(2): 122-132. doi: 10.1089/soro.2016.0069
|
[73] |
KAMAT A M, PEI Y, KOTTAPALLI A G P. Bioinspired cilia sensors with graphene sensing elements fabricated using 3D printing and casting[J]. Nanomaterials, 2019, 9(7): 954. doi: 10.3390/nano9070954
|
[74] |
KAMAT A M, ZHENG X, JAYAWARDHANA B, et al. Bioinspired PDMS-graphene cantilever flow sensors using 3D printing and replica moulding[J]. Nanotechnology, 2020, 32(9): 095501.
|
[75] |
KAIDAROVA A, KHAN M A, MARENGO M, et al. Wearable multifunctional printed graphene sensors[J]. NPJ Flexible Electronics, 2019, 3(1): 1-10. doi: 10.1038/s41528-018-0045-x
|
[76] |
Honing T V D. The 3D printing of a bio-inspired flow sensor system[D]. Groningen, Netherlands: University of Groningen, 2023.
|
[77] |
ZHANG X, SHAN X, XIE T, et al. Harbor seal whisker inspired self-powered piezoelectric sensor for detecting the underwater flow angle of attack and velocity[J]. Measurement, 2021, 172: 108866. doi: 10.1016/j.measurement.2020.108866
|
[78] |
LIU G, JIANG Y, WU P, et al. Artificial whisker sensor with undulated morphology and self-spread piezoresistors for diverse flow analyses[J]. Soft Robotics, 2023, 10(1): 97-105. doi: 10.1089/soro.2021.0166
|
[79] |
EBERHARDT W C, SHAKHSHEER Y A, CALHOUN B H, et al. A bio-inspired artificial whisker for fluid motion sensing with increased sensitivity and reliability[C]//2011 IEEE Sensors. Limerick, Ireland: IEEE, 2011: 982-985.
|
[80] |
WANG T, KENT T A, BERGBREITER S. Design of whisker-inspired sensors for multi-directional hydrodynamic sensing[EB/OL]. [2023-07-14]. https://arxiv.org/abs/2307.09569#:~:text=This%20research%20develops%20a%20novel%20sensor%20for%20aquatic,data%20on%20speed%2C%20currents%2C%20barriers%2C%20and%20water%20disturbance.
|
[81] |
王森, 徐贺, 孔德义, 等. 仿海豹胡须阵列检测水中运动目标尾流特征[J]. 哈尔滨工业大学学报, 2022, 54(6): 63-71.
WANG S, XU H, KONG D Y, et al. Detecting wake characteristics of moving targets in water by bio-inspired seal whisker array[J]. Journal of Harbin Institute of Technology, 2022, 54(6): 63-71.
|
[82] |
WANG S, XU P, WANG X, et al. Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception[J]. Nano Energy, 2022, 97: 107210. doi: 10.1016/j.nanoen.2022.107210
|
[83] |
LIU J, XU P, ZHENG J, et al. Whisker-inspired and self-powered triboelectric sensor for underwater obstacle detection and collision avoidance[J]. Nano Energy, 2022, 101: 107633. doi: 10.1016/j.nanoen.2022.107633
|
[84] |
XU P, LIU J, LIU B, et al. Deep-learning-assisted triboelectric whisker for near field perception and online state estimation of underwater vehicle[J]. Nano Energy, 2024, 129: 110011. doi: 10.1016/j.nanoen.2024.110011
|