
| Citation: | Xiao Wenwen, Cai Qianya, Mao Lifu, Lin Yuan, Zhao Yuan, WANG Mianjin. A Double-Layer Autonomous Decision-Making Method Based on Expert Knowledge and Deep Reinforcement Learning[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0098 |
| [1] |
曹迟, 史文涛, 王百合, 等. 无人水下航行器反潜作战模型仿真[J]. 水下无人系统学报, 2025, 33(1): 156-163.
CAO C, SHI W T, WANG B H, et al. Simulation of anti-submarine warfare model for unmanned underwater vehicles[J]. Journal of Unmanned Undersea Systems, 2025, 33(1): 156-163.
|
| [2] |
陈昭, 丁一杰, 张治强. 无人潜航器发展历程及运用优势研究[J]. 舰船科学技术, 2024, 46(23): 98-102. doi: 10.3404/j.issn.1672-7649.2024.23.016
CHEN Z, DING Y J, ZHANG Z Q. Development history and application advantages of unmanned underwater vehicles[J]. Ship Science and Technology, 2024, 46(23): 98-102. doi: 10.3404/j.issn.1672-7649.2024.23.016
|
| [3] |
张龙伟, 李中政, 董黄伟. 基于UUV的海洋环境测量系统设计[J]. 船电技术, 2023, 43(8): 38-41.
ZHANG L W, LI Z Z, DONG H W. Design of marine environmental monitoring system based on UUV[J]. Marine Electric & Electronic Technology, 2023, 43(8): 38-41.
|
| [4] |
王旭, 李金明, 毛昭勇, 等. 基于组合赋权TOPSIS的智能UUV目标识别与反对抗效能评估[J]. 水下无人系统学报, 2024, 32(5): 779-786.
WANG X, LI J M, MAO Z Y, et al. Intelligent UUV target recognition and anti-countermeasure effectiveness evaluation based on combined weighting TOPSIS[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 779-786.
|
| [5] |
郑康洁, 张新宇, 王伟菘, 等. DQN与规则结合的智能船舶动态自主避障决策[J]. 系统工程与电子技术, 2025, 47(6): 1994-2001. doi: 10.12305/j.issn.1001-506X.2025.06.27
ZHENG K J, ZHANG X Y, WANG W S, et al. Dynamic autonomous obstacle avoidance decision for intelligent ships combining DQN and rules[J]. Systems Engineering and Electronics, 2025, 47(6): 1994-2001. doi: 10.12305/j.issn.1001-506X.2025.06.27
|
| [6] |
李磊, 杜度, 陈科. 基于改进生物启发模型的UUV在线避障方法[J]. 水下无人系统学报, 2019, 27(3): 266-271. doi: 10.11993/j.issn.2096-3920.2019.03.005
LI L, DU D, CHEN K. UUV online obstacle avoidance method based on improved bio-inspired model[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 266-271. doi: 10.11993/j.issn.2096-3920.2019.03.005
|
| [7] |
杨长兵, 张海华, 刘焕牢. 基于深度强化学习的船舶路径规划方法研究[J]. 信息技术, 2024(10): 128-135. doi: 10.13274/j.cnki.hdzj.2024.10.019
YANG C B, ZHANG H H, LIU H L. Research on ship path planning method based on deep reinforcement learning[J]. Information Technology, 2024(10): 128-135. doi: 10.13274/j.cnki.hdzj.2024.10.019
|
| [8] |
詹天碧, 冯辉, 徐海祥, 等. 基于噪声DQN的智能船舶全局路径规划方法[J]. 大连海事大学学报, 2025, 51(1): 43-53. doi: 10.16411/j.cnki.issn1006-7736.2025.01.005
ZHAN T B, FENG H, XU H X, et al. Global path planning method for intelligent ships based on noisy DQN[J]. Journal of Dalian Maritime University, 2025, 51(1): 43-53. doi: 10.16411/j.cnki.issn1006-7736.2025.01.005
|
| [9] |
欧昌奎, 谢磊, 查天奇, 等. 基于深度强化学习和历史轨迹的船舶路径规划[J]. 中国航海, 2024, 47(1): 36-44. doi: 10.3969/j.issn.1000-4653.2024.01.005
OU C K, XIE L, ZHA T Q, et al. Ship path planning based on deep reinforcement learning and historical trajectories[J]. Navigation of China, 2024, 47(1): 36-44. doi: 10.3969/j.issn.1000-4653.2024.01.005
|
| [10] |
徐江鹏, 王俊雷, 唐怡. AUV全向运动轨迹跟踪控制方法[J]. 水下无人系统学报, 2024, 32(6): 1018-1028.
XU, J. P. , WANG, J. L. , TANG, Y. AUV omnidirectional motion trajectory tracking control method[J]. Journal of Unmanned Undersea Systems, 2024, 32(6): 1018-1028.
|
| [11] |
刘清河, 聂文鹏, 乔应, 等. 基于强化学习的无人船路径跟踪控制方法[C]//中国汽车工程学会. 第三十一届中国汽车工程学会年会论文集(1). 哈尔滨工业大学(威海), 2024: 158-164.
|
| [12] |
谭靖, 杨丽刚, 李潇睿, 等. 深度强化学习及其在工业场景的应用与展望[J]. 工程科学学报, 2025, 47(4): 768-779. doi: 10.13374/j.issn2095-9389.2024.10.29.006
TAN J, YANG L G, LI X R, et al. Deep reinforcement learning and its applications and prospects in industrial scenarios[J]. Journal of Engineering Sciences, 2025, 47(4): 768-779. doi: 10.13374/j.issn2095-9389.2024.10.29.006
|
| [13] |
赵经纬, 熊华乔, 崔峰, 等. 无人水下航行器智能运动控制方法研究[J]. 运输经理世界, 2024(34): 58-60. doi: 10.3969/j.issn.1673-3681.2024.34.020
ZHAO J W, XIONG H Q, CUI F, et al. Research on intelligent motion control methods for unmanned underwater vehicles[J]. Transportation Manager World, 2024(34): 58-60. doi: 10.3969/j.issn.1673-3681.2024.34.020
|
| [14] |
温志文, 蔡卫军, 杨春武. UUV自主航行路径规划方法[J]. 制造业自动化, 2016, 38(11): 1-5. doi: 10.3969/j.issn.1009-0134.2016.11.001
WEN Z W, CAI W J, YANG C W. UUV Autonomous navigation path planning method[J]. Manufacturing Automation, 2016, 38(11): 1-5. doi: 10.3969/j.issn.1009-0134.2016.11.001
|
| [15] |
严浙平, 姜玲, 王晓娟, 等. 基于双目视觉的UUV避障半实物仿真系统[J]. 鱼雷技术, 2012, 20(02): 143-148. doi: 10.3969/j.issn.1673-1948.2012.02.014
YAN Z P, JIANG L, WANG X J, et al. Semi-physical simulation system for UUV obstacle avoidance based on binocular vision[J]. Torpedo Technology, 2012, 20(02): 143-148. doi: 10.3969/j.issn.1673-1948.2012.02.014
|
| [16] |
李康斌, 朱齐丹, 牟进友, 等. 基于改进DDQN船舶自动靠泊路径规划方法[J]. 智能系统学报, 2025, 20(1): 73-80. doi: 10.11992/tis.202401005
LI K B, ZHU Q D, MU J Y, et al. Automatic berthing path planning method for ships based on improved DDQN[J]. CAAI Transactions on Intelligent Systems, 2025, 20(1): 73-80. doi: 10.11992/tis.202401005
|
| [17] |
ZHU X, HOU X. Quantum architecture search via truly proximal policy optimization[J]. Scientific Reports, 2023, 13(1): 5157. doi: 10.1038/s41598-023-32349-2
|
| [18] |
徐红丽, 贾本卿, 栾阔. 基于改进人工势场的多UUV编队避障方法[J]. 东北大学学报(自然科学版), 2024, 45(11): 1547-1556. doi: 10.12068/j.issn.1005-3026.2024.11.004
XU H L, JIA B Q, LUAN, K. Multi-UUV formation obstacle avoidance method based on improved artificial potential field[J]. Journal of Northeastern University (Natural Science), 2024, 45(11): 1547-1556. doi: 10.12068/j.issn.1005-3026.2024.11.004
|
| [19] |
程建华, 李鹏程, 管行, 等. 基于改进A*算法的UUV冰下避障航迹规划算法[J]. 导航定位与授时, 2021, 8(06): 13-18. doi: 10.19306/j.cnki.2095-8110.2021.06.002
CHENG J H, LI P C, GUAN X, et al. UUV under-ice obstacle avoidance trajectory planning algorithm based on improved a algorithm[J]. Navigation Positioning and Timing, 2021, 8(06): 13-18. doi: 10.19306/j.cnki.2095-8110.2021.06.002
|
| [20] |
周畅, 于特, 刘佳鹏, 等. 基于快速随机搜索树*与凸优化的船舶路径规划与跟踪算法[J]. 中国舰船研究, 2025, 20(1): 147-161. doi: 10.19693/j.issn.1673-3185.03837
ZHOU C, YU T, LIU J P, et al. Ship path planning and tracking algorithm based on rapidly-exploring random tree and convex optimization[J]. Chinese Journal of Ship Research, 2025, 20(1): 147-161. doi: 10.19693/j.issn.1673-3185.03837
|
| [21] |
滕建平, 梁霄, 陶浩, 等. 无人水下航行器全局路径规划及有限时间跟踪控制[J]. 上海海事大学学报, 2022, 43(01): 1-7. doi: 10.13340/j.jsmu.2022.01.001
TENG J P, LIANG X, TAO H, et al. Global path planning and finite-time tracking control for unmanned underwater vehicles[J]. Journal of Shanghai Maritime University, 2022, 43(01): 1-7. doi: 10.13340/j.jsmu.2022.01.001
|
| [22] |
马焱, 肖玉杰, 陈轶, 等. 基于改进烟花-蚁群算法的海流环境下水下无人潜航器的避障路径规划[J]. 导航与控制, 2019, 18(1): 51-59.
MA Y, XIAO Y J, CHEN Y, et al. Obstacle avoidance path planning for underwater unmanned vehicles in ocean current environments based on improved fireworks-ant colony algorithm[J]. Navigation and Control, 2019, 18(1): 51-59.
|
| [23] |
张宏瀚, 王亚博等. 近海复杂环境下UUV动态路径规划方法研究[J]. 智能系统学报, 2024, 19(1): 114-121. doi: 10.11992/tis.202302028
ZHANG H H, WANG Y B, et al. Dynamic path planning method for UUVs in complex coastal environments[J]. CAAI Transactions on Intelligent Systems, 2024, 19(1): 114-121. doi: 10.11992/tis.202302028
|
| [24] |
王景楠, 薛晨阳, 齐向东, 等. 基于RBF神经网络PID的UUV轨迹跟踪控制[J]. 中北大学学报(自然科学版), 2024, 45(6): 843-851.
WANG J N, XUE C Y, QI X D, et al. UUV trajectory tracking control based on RBF neural network PID[J]. Journal of North University of China (Natural Science Edition), 2024, 45(6): 843-851.
|
| [25] |
野汶博, 方洋旺, 洪瑞阳, 等. 基于控制障碍函数的欠驱动无人水下航行器椭圆障碍物避障制导[J]. 兵工学报, 2025, 46(5): 362-374. doi: 10.12382/bgxb.2024.0404
YE W B, FANG Y W, HONG R Y, et al. Elliptical obstacle avoidance guidance for underactuated unmanned underwater vehicles based on control barrier functions[J]. Acta Armamentarii, 2025, 46(5): 362-374. doi: 10.12382/bgxb.2024.0404
|
| [26] |
何喆, 刘峰, 马子飞. 一种基于膨胀算法的多UUV队形生成与避障策略[J]. 中国新通信, 2022, 24(7): 40-42. doi: 10.3969/j.issn.1673-4866.2022.07.015
HE Z, LIU F, MA Z F. Multi-UUV formation generation and obstacle avoidance strategy based on inflation algorithm[J]. China New Telecommunications, 2022, 24(7): 40-42. doi: 10.3969/j.issn.1673-4866.2022.07.015
|