
| Citation: | DENG Yingjie, XU Yifei, YAN Jing, ZHAO Dingxuan, LI Mengxia. Review of Research Progress on AI Driven Decision and Control of Maritime Unmanned Systems[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0095 |
| [1] |
闫敬, 张诗杭, 关新平, 等. 水下无人系统跨域协同控制: 研究进展与挑战[J]. 控制与决策, 2025, 40(1): 7-27. doi: 10.13195/j.kzyjc.2024.0283
YAN J, ZHANG S H, GUAN X P, et al. Cross domain cooperative control of underwater unmanned systems: Research progresses and challenges[J]. Control and Decision, 2025, 40(1): 7-27. doi: 10.13195/j.kzyjc.2024.0283
|
| [2] |
闫敬, 关新平. 海上无人系统跨域集群发展现状及其关键技术[J]. 自动化学报, 2025, 51(4): 744-761.
YAN J, GUAN X P, Development status and key techniques for cross domain swarm of maritime unmanned systems[J]. Acta Automatica Sinica, 2025, 51(4): 744-761.
|
| [3] |
徐国平, 张显库. 船舶自动舵研究综述[J]. 中国造船, 2013, 54(2): 191-200.
XU G P, ZHANG X K, An overview of ship autopilot research[J]. Shipbuilding of China, 2013, 54(2): 191-200.
|
| [4] |
王少博. 海上自主航行船舶智能避碰决策技术研究 [D]. 大连: 大连海事大学, 2023.
|
| [5] |
RUSSELL S, NORVIG P. Artifical intelligence: a modern approach, Fourth Edition[M]. NJ: Pearson Education, 2021: 2-5.
|
| [6] |
DUAN Y, EDWARDS J S, DWIVEDI Y K. Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda[J]. International Journal of Information Management, 2019, 48: 63-71. doi: 10.1016/j.ijinfomgt.2019.01.021
|
| [7] |
张俊, 徐箭, 许沛东, 等. 人工智能大模型在电力系统运行控制中的应用综述及展望[J]. 武汉大学学报(工学版), 2023, 56(11): 1368-1379. doi: 10.14188/j.1671-8844.2023-11-008
ZHANG J, XU J, XU P D, et al. Overview and prospect of application of artificial intelligence large model in power system operation control[J]. Engineering Journal of Wuhan University, 2023, 56(11): 1368-1379. doi: 10.14188/j.1671-8844.2023-11-008
|
| [8] |
严新平, 刘佳仑, 胡欣珏, 等. 新一代航运系统的未来船舶技术展望[J]. 船海工程, 2024, 53(5): 1-4. doi: 10.3963/j.issn.1671-7953.2024.05.001
YAN X P, LIU J L, HU X Y, et al. Prospects for future ship technologies in the new generation shipping system[J]. Ship & Ocean Engineering, 2024, 53(5): 1-4. doi: 10.3963/j.issn.1671-7953.2024.05.001
|
| [9] |
马勇, 王雯琦, 严新平. 水域无人系统平台自主航行及协同控制研究进展[J]. 无人系统技术, 2022, 5(1): 1-16.
MA Y, WANG W Q, YAN X P, Research progress on autonomous navigation and cooperative control of water area unmanned system platform[J]. Unmanned Systems Technology, 2022, 5(1): 1-16.
|
| [10] |
俞建成, 孙朝阳, 张艾群. 无人帆船研究现状与展望[J]. 机械工程学报, 2018, 54(24): 98-110.
YU J C, SUN Z Y, ZHANG A Q, Research status and prospect of autonomous sailboats[J]. Journal of Mechanical Engineering, 2018, 54(24): 98-110.
|
| [11] |
邱志明, 孟祥尧, 马焱, 等. 海上无人系统发展及关键技术研究[J]. 中国工程科学, 2023, 25(3): 74-83. doi: 10.15302/J-SSCAE-2023.03.005
QIU Z M, MENG X Y, MA Y, et al. Development and key technologies of maritime unmanned systems[J]. Strategic Study of CAE, 2023, 25(3): 74-83. doi: 10.15302/J-SSCAE-2023.03.005
|
| [12] |
孙海文, 于邵祯, 孟祥尧, 等. 海上无人机及蜂群作战指挥控制系统发展[J]. 指挥控制与仿真, 2022, 44(5): 19-23.
SUN H W, YU S Z, MENG X Y, et al. Development of command and control system for unmanned aerial vehicle and swarm warfare at sea[J]. Command Control & Simulation, 2022, 44(5): 19-23.
|
| [13] |
LIU Z Y, ZHANG Q, XIANG X B, et al. Intelligent decision and planning for unmanned surface vehicle: A review of machine learning techniques[J]. Ocean Engineering, 2025, 327: 120968. doi: 10.1016/j.oceaneng.2025.120968
|
| [14] |
TRINH L, MERCELIS S, ANWAR A. A comprehensive review of datasets and deep learning techniques for vision in unmanned surface vehicles[J]. Ocean Engineering, 2025, 334: 121501. doi: 10.1016/j.oceaneng.2025.121501
|
| [15] |
ER M J, MA C, LIU T H, et al. Intelligent motion control of unmanned surface vehicles: A critical review[J]. Ocean Engineering, 2023, 280: 114562. doi: 10.1016/j.oceaneng.2023.114562
|
| [16] |
GAO K Z, GAO M L, ZHOU M C, et al. Artificial intelligence algorithms in unmanned surface vessel task assignment and path planning: A survey[J]. Swarm and Evolutionary Computation, 2024, 86: 101505. doi: 10.1016/j.swevo.2024.101505
|
| [17] |
郝紫霄, 王琦. 基于声呐图像的水下目标检测研究综述[J]. 水下无人系统学报, 2023, 31(2): 339-348.
HAO Z X, WANG Q, Underwater target detection based on sonar image[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 339-348.
|
| [18] |
侯玉立, 王宁, 邱赤东, 等. 无人艇集群路径规划研究综述: 深度强化学习[J]. 水下无人系统学报, 2025, 33(2): 194-203. doi: 10.11993/j.issn.2096-3920.2025-0034
HOU Y L, WANG N, QIU C D, et al. A review of research on path planning of unmanned surface vessel swarm: deep reinforcement learning[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 194-203. doi: 10.11993/j.issn.2096-3920.2025-0034
|
| [19] |
KIM H, PARK J, JIN C, et al. Real-time inverse estimation of multi-directional random waves from vessel-motion sensors using Kalman filter[J]. Ocean Engineering, 2023, 280: 114501. doi: 10.1016/j.oceaneng.2023.114501
|
| [20] |
王宁, 张雪峰, 李洁龙, 等. 面向港口环境精细感知的无人船多传感器融合SLAM系统[J]. 船舶工程, 2024, 46(7): 81-89.
WANG N, ZHANG X F, LI J L, et al, Multi-sensor fusion SLAM system of an unmanned surface vehicle for fine sensing in port environment[J]. Ship Engineering, 2024, 46(7): 81-89.
|
| [21] |
YAN J, GUAN X, YANG X, et al. A survey on integration design of localization, communication, and control for underwater acoustic sensor networks[J]. IEEE Internet of Things Journal, 2025, 12(6): 6300-6324. doi: 10.1109/JIOT.2025.3525482
|
| [22] |
廖勇, 朱俊豪. 人工智能辅助的深海运载器探测技术研究进展[J]. 河北大学学报(自然科学版), 2025, 45(3): 299-308.
LIAO J, ZHU J H, Research progress on artificial intelligence-assisted deep-sea vehicle exploration technology[J]. Journal of Hebei University (Natural Science Edition), 2025, 45(3): 299-308.
|
| [23] |
LIANG C, ZHANG X, WATANABE Y, et al. Autonomous collision avoidance of unmanned surface vehicles based on improved a star and minimum course alteration algorithms[J]. Applied Ocean Research, 2021, 113: 102755. doi: 10.1016/j.apor.2021.102755
|
| [24] |
TAN G, ZHUANG J, ZOU J, et al. Adaptive adjustable fast marching square method based path planning for the swarm of heterogeneous unmanned surface vehicles (USVs)[J]. Ocean Engineering, 2023, 268: 113432. doi: 10.1016/j.oceaneng.2022.113432
|
| [25] |
CUI R, LI Y, YAN W. Mutual information-based multi-AUV path planning for scalar field sampling using multidimensional RRT*[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46(7): 993-1004. doi: 10.1109/TSMC.2015.2500027
|
| [26] |
ZHAO J, MA X, YANG B, et al. Global path planning of unmanned vehicle based on fusion of A*algorithm and Voronoi field[J]. Journal of Intelligent and Connected Vehicles, 2022, 5(3): 250-259. doi: 10.1108/JICV-01-2022-0001
|
| [27] |
SHEN Z, DING W, LIU Y, et al. Path planning optimization for unmanned sailboat in complex marine environment[J]. Ocean Engineering, 2023, 269: 113475. doi: 10.1016/j.oceaneng.2022.113475
|
| [28] |
GAN L, LI X, YAN T, et al. Intelligent ship path planning based on improved artificial potential field in narrow inland waterways[J]. Ocean Engineering, 2025, 317: 119928. doi: 10.1016/j.oceaneng.2024.119928
|
| [29] |
GAO X, JIA D, LIU X, et al. AUV path planning based on the flow field method and dynamic window approach[J]. IEEE Access, 2025, 13: 88484-88498. doi: 10.1109/ACCESS.2025.3570790
|
| [30] |
ZHANG G, SHANG X, LIU J, et al. Improved iterative learning path-following control for USV via the potential-based DVS guidance[J]. Ocean Engineering, 2023, 280: 114543. doi: 10.1016/j.oceaneng.2023.114543
|
| [31] |
DENG Y, ZHANG X, ZHANG G. Line-of-sight-based guidance and adaptive neural path-following control for sailboats[J]. IEEE Journal of Oceanic Engineering, 2020, 45(4): 1177-1189. doi: 10.1109/JOE.2019.2923502
|
| [32] |
DENG Y, ZHANG X, ZHANG G, et al. Parallel guidance and event-triggered robust fuzzy control for path following of autonomous wing-sailed catamaran[J]. Ocean Engineering, 2019, 190: 106442. doi: 10.1016/j.oceaneng.2019.106442
|
| [33] |
ÖZTURK Ü, AKDAG M, AYABAKAN T. A review of path planning algorithms in maritime autonomous surface ships: Navigation safety perspective[J]. Ocean Engineering, 2022, 251: 111010. doi: 10.1016/j.oceaneng.2022.111010
|
| [34] |
DENG Y, NI T, ZHANG Z, et al. Path-following and collision-avoidance guidance of unmanned sailboats based on beetle antennae search optimization[J]. Robotica, 2023, 41(7): 2105-2121. doi: 10.1017/S0263574723000346
|
| [35] |
罗阳, 陶建国, 邓立平, 等. 水下焊接机器人变质心补偿控制[J]. 机器人, 2020, 42(3): 289-300.
LUO Y, TAO J G, DENG L P, et al, Centroid variability compensation control of underwater welding vehicle[J]. Robot, 2020, 42(3): 289-300.
|
| [36] |
代波, 何玉庆, 谷丰, 等. 基于加速度反馈增强的旋翼无人机抗风扰控制[J]. 机器人, 2020, 42(1): 79-88.
DAI B, HE Y Q, GU F, et al, Acceleration feedback enhanced controller for wind disturbance rejection of rotor unmanned aerial vehicle[J]. Robot, 2020, 42(1): 79-88.
|
| [37] |
PENG Z, CUI K, LI H, et al. Model-free antidisturbance autopilot design for autonomous surface vehicles with hardware-in-the-loop experiments[J]. IEEE Transactions on Industrial Informatics, 2024, 20(2): 2387-2396. doi: 10.1109/TII.2023.3288217
|
| [38] |
PENG Z, WANG D, WANG J. Data-driven adaptive disturbance observers for model-free trajectory tracking control of maritime autonomous surface ships[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(12): 5584-5594. doi: 10.1109/TNNLS.2021.3093330
|
| [39] |
HOU Z, ZHU Y. Controller-dynamic-linearization-based model free adaptive control for discrete-time nonlinear systems[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2301-2309. doi: 10.1109/TII.2013.2257806
|
| [40] |
ZHANG G, ZHANG X. Concise robust adaptive path-following control of underactuated ships using DSC and MLP[J]. IEEE Journal of Oceanic Engineering, 2014, 39(4): 685-694. doi: 10.1109/JOE.2013.2280822
|
| [41] |
YANG X, YAN J, HUA C, et al. Trajectory tracking control of autonomous underwater vehicle with unknown parameters and external disturbances[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(2): 1054-1063. doi: 10.1109/TSMC.2019.2894171
|
| [42] |
DENG Y, ZHANG Z, GONG M, et al. Event-triggered asymptotic tracking control of underactuated ships with prescribed performance[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 645-656. doi: 10.1109/TITS.2022.3216808
|
| [43] |
DENG Y, ZHANG X, IM N, et al. Model-based event-triggered tracking control of underactuated surface vessels with minimum learning parameters[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(10): 4001-4014. doi: 10.1109/TNNLS.2019.2951709
|
| [44] |
DENG Y, ZHANG X. Event-Triggered composite adaptive fuzzy output-feedback control for path Following of autonomous surface vessels[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(9): 2701-2713. doi: 10.1109/TFUZZ.2020.3006562
|
| [45] |
DENG Y, ZHANG X, ZHAO B, et al. Event-triggered compound learning tracking control of autonomous surface vessels in the measurement network[J]. Ocean Engineering, 2021, 228: 108817. doi: 10.1016/j.oceaneng.2021.108817
|
| [46] |
邢博闻, 张昭夷, 王世明, 等. 基于深度强化学习的多无人艇协同目标搜索算法[J]. 兵器装备工程学报, 2023, 44(11): 118-125. doi: 10.11809/bqzbgcxb2023.11.015
XING B W, ZHANG Z Y, WANG S M, et al. Multi-USV cooperative target search algorithm based on deep reinforcement learning[J]. Journal of Ordnance Equipment Engineering, 2023, 44(11): 118-125. doi: 10.11809/bqzbgcxb2023.11.015
|
| [47] |
GUO X, CUI R, YAN W. Pursuit-evasion games of marine surface vessels using neural network-based control[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2025, 55(1): 18-27. doi: 10.1109/TSMC.2023.3347044
|
| [48] |
CUI Z, GUAN W, ZHANG X. USV formation navigation decision-making through hybrid deep reinforcement learning using self-attention mechanism[J]. Expert Systems with Applications, 2024, 256: 124906. doi: 10.1016/j.eswa.2024.124906
|
| [49] |
GU N, PENG Z, WANG D, et al. Path-guided containment maneuvering of mobile robots: theory and experiments[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8): 7178-7187. doi: 10.1109/TIE.2020.3000120
|
| [50] |
HUNG N T, REGO F F C, PASCOAL A M. Cooperative distributed estimation and control of multiple autonomous vehicles for range-based underwater target localization and pursuit[J]. IEEE Transactions on Control Systems Technology, 2022, 30(4): 1433-1447. doi: 10.1109/TCST.2021.3107346
|
| [51] |
潘书阳. 第三次抵消战略视阈下美国人工智能的军事运用[D]. 长沙: 国防科技大学, 2019.
|
| [52] |
LI Y, GUO J, GUO X, et al. A novel target detection method of the unmanned surface vehicle under all-weather conditions with an improved YOLOV3[J]. Sensors, 2020, 20(17): 4885. doi: 10.3390/s20174885
|
| [53] |
HE G W, WANG W L, SHI B W, et al. An improved YOLO v4 algorithm-based object detection method for maritime vessels[J]. International Journal of Science and Engineering Applications, 2022, 11(4): 50-55. doi: 10.7753/ijsea1104.1001
|
| [54] |
KIM J H, KIM N, PARK Y W, et al. Object detection and classification based on YOLO-V5 with improved maritime dataset[J]. Journal of Marine Science and Engineering, 2022, 10(3): 377. doi: 10.3390/jmse10030377
|
| [55] |
NING Y, ZHAO L, ZHANG C, et al. STD-Yolov5: A ship-type detection model based on improved Yolov5[J]. Ships and Offshore Structures, 2024, 19(1): 66-75. doi: 10.1080/17445302.2022.2142362
|
| [56] |
李江川, 韩彦岭, 董传胜, 等. YOLO-U: 基于结构重参数化和双重注意力机制的水下目标检测算法[J]. 上海海洋大学学报, 2025, 34(3): 696-706. doi: 10.12024/jsou.20240404474
LI J C, HAN Y L, DONG C S, et al. YOLO-U: Underwater object detection algorithm based on structural re-parameterization and dual attention mechanism[J]. Journal of Shanghai Ocean University, 2025, 34(3): 696-706. doi: 10.12024/jsou.20240404474
|
| [57] |
孙鹏麒, 胡家祯, 黄小华, 等l. 基于YOLO的养殖鱼群全向声呐实时监测方法研究与应用[J]. 中国水产科学, 2025, 32(3): 409-419.
SUN P Q, HU J Z, HUANG X H, et al. Research and application of real-time monitoring method for aquaculture fish schools using omnidirectional sonar based on YOLO[J]. Journal of Fishery Sciences of China 2025, 32(3): 409-419.
|
| [58] |
MIAO T, ZENG H, WANG H, et al. Inshore ship detection in SAR images via an improved SSD model with wavelet decomposition[C]//2021 7th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Bali, Indonesia: IEEE, 2021: 1-5.
|
| [59] |
强伟, 贺昱曜, 郭玉锦, 等. 基于改进SSD的水下目标检测算法研究[J]. 西北工业大学学报, 2020, 38(4): 747-754. doi: 10.11999/JEIT210761
QIANG W, HE Y Y, GUO Y J, et al. Exploring underwater target detection algorithm based on improved SSD[J]. Journal of Northwestern Polytechnical University, 2020, 38(4): 747-754. doi: 10.11999/JEIT210761
|
| [60] |
YANG Y, CHEN P, DING K, et al. Object detection of inland waterway ships based on improved SSD model[J]. Ships and Offshore Structures, 2023, 18(8): 1192-1200. doi: 10.1080/17445302.2022.2110406
|
| [61] |
CHEN B, YU C, ZHAO S, et al. An anchor-free method based on transformers and adaptive features for arbitrarily oriented ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 2012-2028. doi: 10.1109/JSTARS.2023.3325573
|
| [62] |
徐昌贵, 张波, 高建威, 等. FCOSR: 一种无锚框的SAR图像任意朝向船舶目标检测网络[J]. 雷达学报, 2022, 11(3): 335-346. doi: 10.12000/JR21204
XU C G, ZHANG B, GAO J W, et al. FCOSR: An anchor-free method for arbitrary-oriented ship detection in SAR images[J]. Journal of Radars, 2022, 11(3): 335-346. doi: 10.12000/JR21204
|
| [63] |
CHEN M, SUN J, AIDA K, et al. Weather-aware object detection method for maritime surveillance systems[J]. Future Generation Computer Systems, 2024, 151: 111-123. doi: 10.1016/j.future.2023.09.030
|
| [64] |
CHEN Z, GAO X. An improved algorithm for ship target detection in SAR images based on Faster R-CNN[C]// 2018 Ninth International Conference on Intelligent Control and Information Processing(ICICIP), Wanzhou, China: IEEE, 2018: 39-43.
|
| [65] |
LIU J, LIU S, XU S, et al. Two-stage underwater object detection network using swin transformer[J]. IEEE Access, 2022, 10: 117235-117247. doi: 10.1109/ACCESS.2022.3219592
|
| [66] |
JAIN R, ZAWARE S, KACHOLIA N, et al. Advancing underwater trash detection: Harnessing mask R-CNN, YOLOv8, efficientDet-D0 and YOLACT[C]//2024 2nd International Conference on Sustainable Computing and Smart Systems(ICSCSS), Coimbatore, India: IEEE, 2024: 1314-1325.
|
| [67] |
HOU T, LI J. Application of mask R-CNN for building detection in UAV remote sensing images[J]. Heliyon, 2024, 10(19): 38141. doi: 10.1016/j.heliyon.2024.e38141
|
| [68] |
DONG H, LI Y, LIU R. A detection algorithm based on improved cascade R-CNN for UAV aerial images[C]// 2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information(ICETCI), Changchun, China: IEEE, 2023: 700-704.
|
| [69] |
YU N, REN H, DENG T, et al. A lightweight radar ship detection framework with hybrid attentions[J]. Remote Sensing, 2023, 15(11): 2743. doi: 10.3390/rs15112743
|
| [70] |
STECCANELLA L, BLOISI D D, CASTELLINI A, et al. Waterline and obstacle detection in images from low-cost autonomous boats for environmental monitoring[J]. Robotics and Autonomous Systems, 2020, 124: 103346. doi: 10.1016/j.robot.2019.103346
|
| [71] |
ZHOU G C, CHENG C, CHEN Y Z. Efficient multi-branch segmentation network for situation awareness in autonomous navigation[J]. Ocean Engineering, 2024, 302: 117741. doi: 10.1016/j.oceaneng.2024.117741
|
| [72] |
HANSEN K F, YAO L, REN K, et al. Image segmentation in marine environments using convolutional LSTM for temporal context[J]. Applied Ocean Research, 2023, 139: 103709. doi: 10.1016/j.apor.2023.103709
|
| [73] |
SHARMA R, SAQIB M, LIN C T, et al. MASSNet: Multiscale attention for single-stage ship instance segmentation[J]. Neurocomputing, 2024, 594: 127830. doi: 10.1016/j.neucom.2024.127830
|
| [74] |
ZHANG W, HE X, LI W, et al. An integrated ship segmentation method based on discriminator and extractor[J]. Image and Vision Computing, 2020, 93: 103824. doi: 10.1016/j.imavis.2019.11.002
|
| [75] |
ZHANG Y, LI C, SHANG S, et al. SwinSeg: Swin transformer and MLP hybrid network for ship segmentation in maritime surveillance system[J]. Ocean Engineering, 2023, 281: 114885. doi: 10.1016/j.oceaneng.2023.114885
|
| [76] |
HELGESEN Ø K, STAHL A, BREKKE E F. Maritime tracking with georeferenced multi-camera fusion[J]. IEEE Access, 2023, 11: 30340-30359. doi: 10.1109/ACCESS.2023.3261556
|
| [77] |
JIN J, LIU D, LI F, et al. Wide baseline stereovision based obstacle detection for unmanned surface vehicles[J]. Signal, Image and Video Processing, 2024, 18(5): 4605-4614. doi: 10.1007/s11760-024-03098-0
|
| [78] |
HONG B, ZHOU Y, QIN H, et al. Few-shot object detection using multimodal sensor systems of unmanned surface vehicles[J]. Sensors, 2022, 22(4): 1511. doi: 10.3390/s22041511
|
| [79] |
吴文静, 王中训, 但波, 等. 多模态信息融合舰船目标识别研究进展[J]. 探测与控制学报, 2024, 46(2): 1-12.
WU W J, WANG Z X, DAN B, et al. A review of ship target recognition based on multi-modal information fusion[J]. Journal of Detection & Control, 2024, 46(2): 1-12.
|
| [80] |
XU H, ZHANG X, HE J, et al. Real-time volumetric perception for unmanned surface vehicles through fusion of radar and camera[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1-12. doi: 10.1109/tim.2024.3381690
|
| [81] |
DENG Y, HUANG Y, ZHAO D, et al. Deep-learning-based vessel trajectory prediction model with clustering-enhanced phased destination recognition[J/OL]. Ships and Offshore Structures, 2025, (Published Online)[2026.01.07]. https://doi.org/10.1080/17445302.2025.2538134.
|
| [82] |
ZHANG J, MENG Z, LIU S, et al. A novel trajectory prediction method for UAV air combat based on QCNet-3D[J]. Defence Technology, 2025, 54: 151-165. doi: 10.1016/j.dt.2025.07.007
|
| [83] |
GONG Z, LI C, JIANG F. A machine learning-based approach for auto-detection and localization of targets in underwater acoustic array networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15857-15866. doi: 10.1109/TVT.2020.3036350
|
| [84] |
YAN J, LI X, YANG X, et al. Integrated localization and tracking for AUV with model uncertainties via scalable sampling-based reinforcement learning approach[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(11): 6952-6967. doi: 10.1109/TSMC.2021.3129534
|
| [85] |
YAN J, YI M, YANG X, et al. Broad-learning-based localization for underwater sensor networks with stratification compensation[J]. IEEE Internet of Things Journal, 2023, 10(15): 13123-13137. doi: 10.1109/JIOT.2023.3260192
|
| [86] |
SILVA JUNIOR A G D, SANTOS D H D, NEGREIROS A P F D, et al. High-level path planning for an autonomous sailboat robot using Q-learning[J]. Sensors, 2020, 20(6): 1550. doi: 10.3390/s20061550
|
| [87] |
荆纬, 李浩, 咸琳涛, 等. 基于强化学习的自动帆船路径规划算法研究[J]. 中国海洋大学学报(自然科学版), 2021, 51(8): 79-87. doi: 10.16441/j.cnki.hdxb.20190069
JING W, LI H, XIAN L T, et al. Research on path planning of automatic sailboat based on reinforcement learning[J]. Periodical of Ocean University of China, 2021, 51(8): 79-87. doi: 10.16441/j.cnki.hdxb.20190069
|
| [88] |
YU L, CHEN Z, WU H, et al. Soft actor-critic combining potential field for global path planning of autonomous mobile robot[J]. IEEE Transactions on Vehicular Technology, 2025, 74(5): 7114-7123. doi: 10.1109/TVT.2024.3521508
|
| [89] |
WU J, CHENG L, CHU S, et al. An autonomous coverage path planning algorithm for maritime search and rescue of persons-in-water based on deep reinforcement learning[J]. Ocean Engineering, 2024, 291: 116403. doi: 10.1016/j.oceaneng.2023.116403
|
| [90] |
CHU Z, WANG F, LEI T, et al. Path planning based on deep reinforcement learning for autonomous underwater vehicles under ocean current disturbance[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(1): 108-120. doi: 10.1109/TIV.2022.3153352
|
| [91] |
SONG W, CHEN Z, SUN M, et al. A COLREGs-based path-planning method for collision avoidance considering path cost through reinforcement learning[J]. Ocean Engineering, 2025, 325: 120746. doi: 10.1016/j.oceaneng.2025.120746
|
| [92] |
XIAO H, FU L, SHANG C, et al. Multi objective cooperative path planning of uncrewed surface vehicle based on deep reinforcement learning[J]. IEEE Internet of Things Journal, 2025, 12(8): 9743-9758. doi: 10.1109/JIOT.2024.3509521
|
| [93] |
WALTZ M, PAULIG N, OKHRIN O. 2-level reinforcement learning for ships on inland waterways: Path planning and following[J]. Expert Systems with Applications, 2025, 274: 126933. doi: 10.1016/j.eswa.2025.126933
|
| [94] |
SONNTAG V, PERRUSQUIA A, TSOURDOS A, et al. A COLREGs compliance reinforcement learning approach for USV manoeuvring in track-following and collision avoidance problems[J]. Ocean Engineering, 2025, 316: 119907. doi: 10.1016/j.oceaneng.2024.119907
|
| [95] |
关巍, 罗文哲, 崔哲闻. 基于深度强化学习的无人驾驶船舶避碰行为决策方法[J]. 大连海事大学学报, 2024, 50(1): 11-19.
GUAN W, LUO W Z, CUI Z W, Collision avoidance behavior decision-making of unmanned ship based on deep reinforcement learning[J]. Journal of Dalian Maritime University, 2024, 50(1): 11-19.
|
| [96] |
WANG C, ZHANG X, GAO H, et al. COLERGs-constrained safe reinforcement learning for realising MASS’s risk-informed collision avoidance decision making[J]. Knowledge-Based Systems, 2024, 300: 112205. doi: 10.1016/j.knosys.2024.112205
|
| [97] |
GAO W, HAN M, WANG Z, et al. Research on method of collision avoidance planning for UUV based on deep reinforcement learning[J]. Journal of Marine Science and Engineering, 2023, 11(12): 2245. doi: 10.3390/jmse11122245
|
| [98] |
ZHANG A, WANG W, BI W, et al. A path planning method based on deep reinforcement learning for AUV in complex marine environment[J]. Ocean Engineering, 2024, 313: 119354. doi: 10.1016/j.oceaneng.2024.119354
|
| [99] |
KIM D, HUH K. Neural motion planning for autonomous parking[J]. International Journal of Control, Automation and Systems, 2023, 21(4): 1309-1318. doi: 10.1007/s12555-022-0082-z
|
| [100] |
YOON Y, JO A. Obstacle avoidance planning for autonomous vehicles based on neural network-centric path sampling[J]. International Journal of Control, Automation and Systems, 2025, 23(1): 126-136. doi: 10.1007/s12555-024-0697-3
|
| [101] |
WANG J, JIA X, ZHANG T, et al. Deep neural network enhanced sampling-based path planning in 3D space[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(4): 3434-3443. doi: 10.1109/TASE.2021.3121408
|
| [102] |
HU L, WEI C, YIN L. Fuzzy A*quantum multi-stage Q-learning artificial potential field for path planning of mobile robots[J]. Engineering Applications of Artificial Intelligence, 2025, 141: 109866. doi: 10.1016/j.engappai.2024.109866
|
| [103] |
SAMADI GHARAJEH M, JOND H B. An intelligent approach for autonomous mobile robots path planning based on adaptive neuro-fuzzy inference system[J]. Ain Shams Engineering Journal, 2022, 13(1): 101491. doi: 10.1016/j.asej.2021.05.005
|
| [104] |
DENG Y, ZHANG S, XU Y, et al. Event-triggered optimal trajectory tracking control of underactuated ships based on goal representation heuristic dynamic programming[J]. Ocean Engineering, 2024, 308: 118251. doi: 10.1016/j.oceaneng.2024.118251
|
| [105] |
CHEN L, DAI S L, DONG C. Adaptive optimal tracking control of an underactuated surface vessel using actor–critic reinforcement learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(6): 7520-7533. doi: 10.1109/TNNLS.2022.3214681
|
| [106] |
ZHANG G, YIN S, LI J, et al. Game-based event-triggered control for unmanned surface vehicle: algorithm design and harbor experiment[J]. IEEE Transactions on Cybernetics, 2025, 55(6): 2729-2741. doi: 10.1109/TCYB.2025.3556042
|
| [107] |
DENG Y, LIU T, ZHAO D. Event-triggered output-feedback adaptive tracking control of autonomous underwater vehicles using reinforcement learning[J]. Applied Ocean Research, 2021, 113: 102676. doi: 10.1016/j.apor.2021.102676
|
| [108] |
ZHANG G, LI Z, LI J, et al. Prescribed performance path-following control for rotor-assisted vehicles via an improved reinforcement learning mechanism[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(9): 17395-17405. doi: 10.1109/TNNLS.2025.3562245
|
| [109] |
BAI W, CHEN D, ZHAO B, et al. Reinforcement learning control for a class of discrete-time non-strict feedback multi-agent systems and application to multi-marine ve-hicles[J]. IEEE Transactions on Intelligent Vehicles, 2025, 10(5): 3613-3625. doi: 10.1109/TIV.2024.3458894
|
| [110] |
FAN Y, DONG H, ZHAO X, et al. Path-following control of unmanned underwater vehicle based on an improved TD3 deep reinforcement learning[J]. IEEE Transactions on Control Systems Technology, 2024, 32(5): 1904-1919. doi: 10.1109/TCST.2024.3377876
|
| [111] |
XIA J, ZHU X, LIU Z, et al. LSTM-DPPO based deep reinforcement learning controller for path following optimization of unmanned surface vehicle[J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1343-1358. doi: 10.23919/JSEE.2023.000113
|
| [112] |
JIANG P, SONG S, HUANG G. Attention-based meta-reinforcement learning for tracking control of AUV with time-varying dynamics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(11): 6388-6401. doi: 10.1109/TNNLS.2021.3079148
|
| [113] |
JIANG Y, ZHANG K, ZHAO M, et al. Adaptive meta-reinforcement learning for AUVs 3D guidance and control under unknown ocean currents[J]. Ocean Engineering, 2024, 309: 118498. doi: 10.1016/j.oceaneng.2024.118498
|
| [114] |
ZHANG Q, PAN W, REPPA V. Model-reference reinforcement learning for collision-free tracking control of autonomous surface vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 8770-8781. doi: 10.1109/TITS.2021.3086033
|
| [115] |
PENG Z, XIA F, LIU L, et al. Online deep learning control of an autonomous surface vehicle using learned dynamics[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(2): 3283-3292. doi: 10.1109/TIV.2023.3333437
|
| [116] |
LIU T, ZHAO J, HUANG J, et al. Research on model predictive control of autonomous underwater vehicle based on physics informed neural network modeling[J]. Ocean Engineering, 2024, 304: 117844. doi: 10.1016/j.oceaneng.2024.117844
|
| [117] |
XU P F, HAN C B, CHENG H X, et al. A physics-informed neural network for the prediction of unmanned surface vehicle dynamics[J]. Journal of Marine Science and Engineering, 2022, 10(2): 148. doi: 10.3390/jmse10020148
|
| [118] |
WANG S, YU W, WU C, et al. Self-supervised learning with high-stable guidance law and label generation for USV trajectory tracking control[J]. Ocean Engineering, 2025, 329: 121079. doi: 10.1016/j.oceaneng.2025.121079
|
| [119] |
段续庭, 吴思凡, 王奇, 等. 车机协同智能无人系统关键技术研究与展望[J]. 无人系统技术, 2025, 8(2): 1-18.
DUAN X T, WU S F, WANG Q, et al, Key technology research and prospect of truck-drone cooperative intelligent unmanned systems[J]. Unmanned Systems Technology, 2025, 8(2): 1-18.
|
| [120] |
CUI Z, GUAN W, HAO S, et al. Gated communication attention-based MADDPG algorithm for multiple USVs collaborative hunting decision-making strategy[J]. Ocean Engineering, 2025, 334: 121510. doi: 10.1016/j.oceaneng.2025.121510
|
| [121] |
WANG Z, DU J, JIANG C, et al. Task scheduling for distributed AUV network target hunting and searching: an energy-efficient AoI-aware DMAPPO approach[J]. IEEE Internet of Things Journal, 2023, 10(9): 8271-8285. doi: 10.1109/JIOT.2022.3230916
|
| [122] |
LIU Y, SONG R, BUCKNALL R, et al. Intelligent multi-task allocation and planning for multiple unmanned surface vehicles(USVs) using self-organising maps and fast marching method[J]. Information Sciences, 2019, 496: 180-197. doi: 10.1016/j.ins.2019.05.029
|
| [123] |
MA S, GUO W, SONG R, et al. Unsupervised learning based coordinated multi-task allocation for unmanned surface vehicles[J]. Neurocomputing, 2021, 420: 227-245. doi: 10.1016/j.neucom.2020.09.031
|
| [124] |
TAN G, ZHUANG J, ZOU J, et al. Multi-type task allocation for multiple heterogeneous unmanned surface vehicles(USVs) based on the self-organizing map[J]. Applied Ocean Research, 2022, 126: 103262. doi: 10.1016/j.apor.2022.103262
|
| [125] |
LIU Z, LIU C, QU W, et al. Deep reinforcement learning-based multi-AUV task allocation algorithm in underwater wireless sensor networks[J]. IEEE Sensors Journal, 2025, 25(2): 3909-3922. doi: 10.1109/JSEN.2024.3507796
|
| [126] |
ZHAO Z, LIU C, GUANG X, et al. A transmission-reliable topology control framework based on deep reinforcement learning for UWSNs[J]. IEEE Internet of Things Journal, 2023, 10(15): 13317-13332. doi: 10.1109/JIOT.2023.3262690
|
| [127] |
LI J, YI P, DUAN T, et al. Centroid-guided target-driven topology control method for UAV Ad-Hoc networks based on tiny deep reinforcement learning algorithm[J]. IEEE Internet of Things Journal, 2024, 11(12): 21083-21091. doi: 10.1109/JIOT.2024.3376647
|
| [128] |
YAN J, CAO W, YANG X, et al. Communication-efficient and collision-free motion planning of underwater vehicles via integral reinforcement learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(6): 8306-8320. doi: 10.1109/TNNLS.2022.3226776
|
| [129] |
LIU D, ZHANG J, CUI J, et al. Deep learning aided routing for space-air-ground integrated networks relying on real satellite, flight, and shipping data[J]. IEEE Wireless Communications, 2022, 29(2): 177-184. doi: 10.1109/MWC.003.2100393
|
| [130] |
TARIF M, HOMAEI M, MOSAVI A. An enhanced fuzzy routing protocol for energy optimization in the underwater wireless sensor networks[J]. Computers, Materials and Continua, 2025, 83(2): 1791-1820. doi: 10.32604/cmc.2025.063962
|
| [131] |
ULLAH KHAN S, ULLAH KHAN Z, ALKHOWAITER M, et al. Energy-efficient routing protocols for UWSNs: A comprehensive review of taxonomy, challenges, opportunities, future research directions, and machine learning perspectives[J]. Journal of King Saud University-Computer and Information Sciences, 2024, 36(7): 102128. doi: 10.1016/j.jksuci.2024.102128
|
| [132] |
YAN J, ZHOU X, YANG X, et al. Joint design of channel estimation and flocking control for multi-AUV-based maritime transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(12): 14520-14535. doi: 10.1109/TITS.2023.3292967
|
| [133] |
JING L, WANG Q, HE C, et al. A learned denoising-based sparse adaptive channel estimation for OTFS underwater acoustic communications[J]. IEEE Wireless Communications Letters, 2024, 13(4): 969-973. doi: 10.1109/LWC.2024.3354280
|
| [134] |
SHAO S, PENG Y, HE C, et al. Efficient path planning for UAV formation via comprehensively improved particle swarm optimization[J]. ISA Transactions, 2020, 97: 415-430. doi: 10.1016/j.isatra.2019.08.018
|
| [135] |
SHORAKAEI H, VAHDANI M, IMANI B, et al. Optimal cooperative path planning of unmanned aerial vehicles by a parallel genetic algorithm[J]. Robotica, 2016, 34(4): 823-836. doi: 10.1017/S0263574714001878
|
| [136] |
于月平, 袁莞迈, 段海滨. 仿鹰-欧椋鸟智能行为的无人机集群追逃控制[J]. 指挥与控制学报, 2022, 8(4): 422-433.
YU Y P, YUAN W M, DUAN H B, Pursuit-evasion control for uav swarm imitating the intelligent behavior in hawks-starlings[J]. Journal of Command and Control, 2022, 8(4): 422-433.
|
| [137] |
JIN W, TIAN X, SHI B, et al. Enhanced UAV pursuit-evasion using boids modelling: A synergistic integration of bird swarm intelligence and DRL[J]. Computers, Materials and Continua, 2024, 80(3): 3523-3553. doi: 10.32604/cmc.2024.055125
|
| [138] |
ISMAIL A H, SONG X, OUELHADJ D, et al. Unmanned surface vessel routing and unmanned aerial vehicle swarm scheduling for off-shore wind turbine blade inspection[J]. Expert Systems with Applications, 2025, 284: 127534. doi: 10.1016/j.eswa.2025.127534
|
| [139] |
苏昊, 董豪, 印薇, 等. 海上装备群体博弈方法研究综述[J]. 中国舰船研究, 2025, 1-24.
SU H, DONG H, YIN W, et al. Group gaming approaches for maritime equipment: A survey[J]. Chinese Journal of Ship Research, 2025, 1-24.
|
| [140] |
WEN J, LI Z, XI M, et al. A LLM-assisted auv 3D path planning scheme under ocean current interference via reinforcement learning[J]. IEEE Internet of Things Journal, 2025, 12(19): 39185-39196. doi: 10.1109/JIOT.2025.3540820
|
| [141] |
XU C, CHU Y, GAO Q, et al. Autonomous unmanned surface vehicle docking using large language model guide reinforcement learning[J]. Ocean Engineering, 2025, 323: 120608. doi: 10.1016/j.oceaneng.2025.120608
|
| [142] |
KU J, KIM S, LEE E, et al. Enhancing autonomous ship communication: a cost-effective and high-accuracy LLM framework using decision trees and RAG[C]//2025 International Conference on Artificial Intelligence in Information and Communication(ICAIIC), Fukuoka, Japan: IEEE, 2025: 0420-0426.
|
| [143] |
CHIANG C W, LU Z, LI Z, et al. Enhancing AI-assisted group decision making through LLM-powered devil's advocate[C]//Proceedings of the 29th International Conference on Intelligent User Interfaces, Greenvile, USA: ACM, 2024: 103-119.
|