• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
ZHANG Jun, LUO Fan, YUAN Zheng. A multi-scale convolutional neural network based underwater image enhancement algorithm and edge deployment[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0094
Citation: ZHANG Jun, LUO Fan, YUAN Zheng. A multi-scale convolutional neural network based underwater image enhancement algorithm and edge deployment[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0094

A multi-scale convolutional neural network based underwater image enhancement algorithm and edge deployment

doi: 10.11993/j.issn.2096-3920.2025-0094
  • Received Date: 2025-07-25
  • Accepted Date: 2025-09-01
  • Rev Recd Date: 2025-08-27
  • Available Online: 2025-11-24
  • This paper proposes a multi-scale convolutional neural network-based underwater image enhancement algorithm to address the problems of noise interference, texture blur, color distortion, and high computational complexity and time consumption of traditional enhancement algorithms caused by water scattering and absorption in underwater visible light images. Firstly, the entire network is designed using the U-Net structure, which combines shallow texture features with deep semantic features to effectively restore the texture and color information of the image. Secondly, in order to reduce the model parameters, a lightweight feature extraction module can be introduced, which can reduce the model parameters and accelerate the convergence of the network. Introducing multi-scale pyramid pooling in the backbone network for extracting multi-scale features compensates for the shortcomings of traditional algorithms in detail restoration. Finally, by combining L1 loss with structural similarity index(SSIM) loss, the network can effectively improve the restoration of image brightness and contrast. In order to reduce the time required for forward inference of the algorithm, the algorithm proposed in this paper was quantified and deployed on an embedded platform. By calling neural processing unit(NPU) resources to accelerate network model inference, the forward inference time on Atlas 200I A2 was only 28ms, meeting the low latency requirements for engineering applications. Through experiments on publicly available underwater datasets, the multi-scale convolutional neural network algorithm proposed in this paper achieved underwater image quality measure(UIQM) and uncertainty in color, intensity, and saturation of an image(UCIQE) of 4.33 and 0.63, respectively, on the test set, demonstrating the effectiveness of the proposed enhancement algorithm.

     

  • loading
  • [1]
    王永鑫, 刁鸣, 韩闯. 基于同态滤波的水下图像增强与色彩校正模 型[J]. 计算机工程与应用, 2018, 54(11): 30-34.

    WANG Y X, DIAO M, HAN C. Underwater image enhancement and color correction model based on homomorphic filtering[J]. Computer Engineering and Applications, 2018, 54(11): 30-34.
    [2]
    李黎, 王惠刚, 刘星. 基于改进暗原色先验和颜色校正的水下图像增强[J]. 光学学报, 2017, 37(12): 9.

    LI L, WANG H G, LIU X. Underwater image enhancement based on improved dark primary prior and color correction[J]. Acta Optica Sinica, 2017, 37(12): 9.
    [3]
    杨润, 刘增力, 赵宣植. 基于颜色校正和暗亮双通道先验的水下图像增强算法[J]. 红外技术, 2024, 46(9): 984-993.

    YANG R, LIU Z L, ZHAO X Z. Underwater image enhancement algorithm based on color correction and dual channel prior of brightness and darkness[J]. Infrared Technology, 2024, 46(9): 984-993.
    [4]
    王燕, 张金峰, 王丽康, 等. 基于注意力机制与特征重建的水下图像增强[J]. 红外技术, 2024, 46(9): 1006-1014.

    WANG Y, ZHANG J F, WANG L K, et al. Underwater image enhancement based on attention mechanism and feature reconstruction[J]. Infrared Technology, 2024, 46(9): 1006-1014.
    [5]
    程竹明, 李佳轩, 黄三傲, 等. 基于多分支残差注意力网络的水下图像增强[J]. 光学精密工程, 2025, 33(7): 1141-1151. doi: 10.37188/OPE.20253307.1141

    CHENG Z M, LI J X, HUANG S A, et al. Underwater image enhancement based on multi branch residual attention network[J]. Optical Precision Engineering, 2025, 33(7): 1141-1151. doi: 10.37188/OPE.20253307.1141
    [6]
    王树林, 杨建民, 卢昌宇, 等. 一种基于双通道的水下图像增强卷积神经网络[J]. 海洋工程, 2023, 41(6): 158-170.

    WANG S L, YANG J M, LU C Y, et al. A dual channel underwater image enhancement convolutional neural network[J]. Ocean Engineering, 2023, 41(6): 158-170.
    [7]
    严浙平, 曲思瑜, 邢文. 水下图像增强方法研究综述[J]. 智能系统学报, 2022, 17(5): 860-873.

    YAN Z P, QU S Y, XING W. A review of underwater image enhancement methods[J]. Journal of Intelligent Systems, 2022, 17(5): 860-873.
    [8]
    MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Convolutional neural networks for large-scale remote-sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 55(2): 645-657.
    [9]
    WU Z, SHEN C, VAN DEN HENGEL A. Wider or deeper: Revisiting the resnet model for visual recognition[J]. Pattern Recognition, 2019, 90: 119-133. doi: 10.1016/j.patcog.2019.01.006
    [10]
    CHEN R C. Automatic license plate recognition via sliding-window darknet-YOLO deep learning[J]. Image and Vision Computing, 2019, 87: 47-56. doi: 10.1016/j.imavis.2019.04.007
    [11]
    ZHAO C, CHEN M. YOLOv7-RFPCW of a lightweight target detection algorithm for benthic organisms underwater[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(11): 168-177.
    [12]
    HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
    [13]
    XU C, DU Y, ZHENG W, et al. Facial expression recognition based on YOLOv8 deep learning in complex scenes[J]. International Journal of Information and Communication Technology, 2025, 26(1): 89-101. doi: 10.1504/IJICT.2025.144013
    [14]
    HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017 : 7132-7141.
    [15]
    ZHAO D, LIU K, ZHANG Z, et al. Efficient stereo matching using attention mechanism and edge optimization[J]. Journal of Electronic Imaging, 2023, 32(5): 16.
    [16]
    黄巧玲, 郑伯川, 丁梓成, 等. 融合监督注意力模块和跨阶段特征融合的图像修复改进网络[J]. 计算机应用, 2024, 44(2): 572-579.

    HUANG Q L, ZHENG B C, DING Z C, et al. Improved image restoration network integrating supervised attention module and cross stage feature fusion[J]. Computer Applications, 2024, 44(2): 572-579.
    [17]
    ZHANG W D, ZHUANG P X, SUN H H, et al. Underwater image enhancement via minimal color loss and locally adaptive contrast[J]. IEEE Transactions on Image Processing, 2022, 31: 3997-4010. doi: 10.1109/TIP.2022.3177129
    [18]
    SINGH N, BHAT A. A robust model for improving the quality of underwater images using enhancement techniques[J]. Multimedia tools and Applications, 2024(1): 83.
    [19]
    朱恒军, 王天落, 马利浩. 水下图像的颜色校正及对比度增强算法研究[J]. 舰船电子工程, 2023, 43(8): 149-154.

    ZHU H J, WANG T L, MA L H. Research on color correction and contrast enhancement algorithms for underwater images[J]. Ship Electronic Engineering, 2023, 43(8): 149-154
    [20]
    KASHIF I, SALAM R A, AZAM O, et al. Underwater image enhancement using an integrated colour model[J]. Iaeng International Journal of Computer Science, 2007, 34(2): 239-244.
    [21]
    TSAI Y S, CHANG K W, LAN Y J. Advancing underwater image clarity: A GAN-based approach with residual blocks and linear blending[J]. Machine Vision and Applications, 2025, 36(4): 1-22.
    [22]
    陈学磊, 张品, 权令伟, 等. 融合深度学习与成像模型的水下图像增强算法[J]. 计算机工程, 2022, 48(2): 243-249.

    CHEN X L, ZHANG P, QUAN L W. Underwater image enhancement algorithm integrating deep learning and imaging models[J]. Computer Engineering, 2022, 48(2): 243-249.
    [23]
    ZHUANG P X, WU J M, PORIKL F, et al. Underwater image enhancement with Hyper-Laplacian reflectance priors[J]. IEEE Transactions on Image Processing, 2022, 31: 5442-5455. doi: 10.1109/TIP.2022.3196546
    [24]
    NAIK A, SWARNAKAR A, MITTAL K. Shallow-uwnet: Compressed model for underwater image enhancement (student abstract)[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver, USA: 2021, 35(18): 15853-15854.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article Views(20) PDF Downloads(0) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return