
| Citation: | ZHANG Jun, LUO Fan, YUAN Zheng. A multi-scale convolutional neural network based underwater image enhancement algorithm and edge deployment[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0094 |
| [1] |
王永鑫, 刁鸣, 韩闯. 基于同态滤波的水下图像增强与色彩校正模 型[J]. 计算机工程与应用, 2018, 54(11): 30-34.
WANG Y X, DIAO M, HAN C. Underwater image enhancement and color correction model based on homomorphic filtering[J]. Computer Engineering and Applications, 2018, 54(11): 30-34.
|
| [2] |
李黎, 王惠刚, 刘星. 基于改进暗原色先验和颜色校正的水下图像增强[J]. 光学学报, 2017, 37(12): 9.
LI L, WANG H G, LIU X. Underwater image enhancement based on improved dark primary prior and color correction[J]. Acta Optica Sinica, 2017, 37(12): 9.
|
| [3] |
杨润, 刘增力, 赵宣植. 基于颜色校正和暗亮双通道先验的水下图像增强算法[J]. 红外技术, 2024, 46(9): 984-993.
YANG R, LIU Z L, ZHAO X Z. Underwater image enhancement algorithm based on color correction and dual channel prior of brightness and darkness[J]. Infrared Technology, 2024, 46(9): 984-993.
|
| [4] |
王燕, 张金峰, 王丽康, 等. 基于注意力机制与特征重建的水下图像增强[J]. 红外技术, 2024, 46(9): 1006-1014.
WANG Y, ZHANG J F, WANG L K, et al. Underwater image enhancement based on attention mechanism and feature reconstruction[J]. Infrared Technology, 2024, 46(9): 1006-1014.
|
| [5] |
程竹明, 李佳轩, 黄三傲, 等. 基于多分支残差注意力网络的水下图像增强[J]. 光学精密工程, 2025, 33(7): 1141-1151. doi: 10.37188/OPE.20253307.1141
CHENG Z M, LI J X, HUANG S A, et al. Underwater image enhancement based on multi branch residual attention network[J]. Optical Precision Engineering, 2025, 33(7): 1141-1151. doi: 10.37188/OPE.20253307.1141
|
| [6] |
王树林, 杨建民, 卢昌宇, 等. 一种基于双通道的水下图像增强卷积神经网络[J]. 海洋工程, 2023, 41(6): 158-170.
WANG S L, YANG J M, LU C Y, et al. A dual channel underwater image enhancement convolutional neural network[J]. Ocean Engineering, 2023, 41(6): 158-170.
|
| [7] |
严浙平, 曲思瑜, 邢文. 水下图像增强方法研究综述[J]. 智能系统学报, 2022, 17(5): 860-873.
YAN Z P, QU S Y, XING W. A review of underwater image enhancement methods[J]. Journal of Intelligent Systems, 2022, 17(5): 860-873.
|
| [8] |
MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Convolutional neural networks for large-scale remote-sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 55(2): 645-657.
|
| [9] |
WU Z, SHEN C, VAN DEN HENGEL A. Wider or deeper: Revisiting the resnet model for visual recognition[J]. Pattern Recognition, 2019, 90: 119-133. doi: 10.1016/j.patcog.2019.01.006
|
| [10] |
CHEN R C. Automatic license plate recognition via sliding-window darknet-YOLO deep learning[J]. Image and Vision Computing, 2019, 87: 47-56. doi: 10.1016/j.imavis.2019.04.007
|
| [11] |
ZHAO C, CHEN M. YOLOv7-RFPCW of a lightweight target detection algorithm for benthic organisms underwater[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(11): 168-177.
|
| [12] |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
|
| [13] |
XU C, DU Y, ZHENG W, et al. Facial expression recognition based on YOLOv8 deep learning in complex scenes[J]. International Journal of Information and Communication Technology, 2025, 26(1): 89-101. doi: 10.1504/IJICT.2025.144013
|
| [14] |
HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017 : 7132-7141.
|
| [15] |
ZHAO D, LIU K, ZHANG Z, et al. Efficient stereo matching using attention mechanism and edge optimization[J]. Journal of Electronic Imaging, 2023, 32(5): 16.
|
| [16] |
黄巧玲, 郑伯川, 丁梓成, 等. 融合监督注意力模块和跨阶段特征融合的图像修复改进网络[J]. 计算机应用, 2024, 44(2): 572-579.
HUANG Q L, ZHENG B C, DING Z C, et al. Improved image restoration network integrating supervised attention module and cross stage feature fusion[J]. Computer Applications, 2024, 44(2): 572-579.
|
| [17] |
ZHANG W D, ZHUANG P X, SUN H H, et al. Underwater image enhancement via minimal color loss and locally adaptive contrast[J]. IEEE Transactions on Image Processing, 2022, 31: 3997-4010. doi: 10.1109/TIP.2022.3177129
|
| [18] |
SINGH N, BHAT A. A robust model for improving the quality of underwater images using enhancement techniques[J]. Multimedia tools and Applications, 2024(1): 83.
|
| [19] |
朱恒军, 王天落, 马利浩. 水下图像的颜色校正及对比度增强算法研究[J]. 舰船电子工程, 2023, 43(8): 149-154.
ZHU H J, WANG T L, MA L H. Research on color correction and contrast enhancement algorithms for underwater images[J]. Ship Electronic Engineering, 2023, 43(8): 149-154
|
| [20] |
KASHIF I, SALAM R A, AZAM O, et al. Underwater image enhancement using an integrated colour model[J]. Iaeng International Journal of Computer Science, 2007, 34(2): 239-244.
|
| [21] |
TSAI Y S, CHANG K W, LAN Y J. Advancing underwater image clarity: A GAN-based approach with residual blocks and linear blending[J]. Machine Vision and Applications, 2025, 36(4): 1-22.
|
| [22] |
陈学磊, 张品, 权令伟, 等. 融合深度学习与成像模型的水下图像增强算法[J]. 计算机工程, 2022, 48(2): 243-249.
CHEN X L, ZHANG P, QUAN L W. Underwater image enhancement algorithm integrating deep learning and imaging models[J]. Computer Engineering, 2022, 48(2): 243-249.
|
| [23] |
ZHUANG P X, WU J M, PORIKL F, et al. Underwater image enhancement with Hyper-Laplacian reflectance priors[J]. IEEE Transactions on Image Processing, 2022, 31: 5442-5455. doi: 10.1109/TIP.2022.3196546
|
| [24] |
NAIK A, SWARNAKAR A, MITTAL K. Shallow-uwnet: Compressed model for underwater image enhancement (student abstract)[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver, USA: 2021, 35(18): 15853-15854.
|