• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
WANG Tingyu, SHI Keyong, WU Mengwei, TANG Wei. Recent Advances in Underwater Flexible Sensors[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0093
Citation: WANG Tingyu, SHI Keyong, WU Mengwei, TANG Wei. Recent Advances in Underwater Flexible Sensors[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0093

Recent Advances in Underwater Flexible Sensors

doi: 10.11993/j.issn.2096-3920.2025-0093
  • Received Date: 2025-07-23
  • Accepted Date: 2025-09-11
  • Rev Recd Date: 2025-09-06
  • Available Online: 2025-09-30
  • With the increasing demand for ocean exploration, underwater flexible sensors have demonstrated significant potential in various underwater applications due to their exceptional compliance and environmental adaptability. In particular, the integration of underwater flexible sensors in complex environments, such as those with high hydrostatic pressure, large strains, and corrosion resistance, plays a crucial role in enhancing the perception capabilities of underwater soft robots, diving equipment, marine exploration devices, and other marine engineering systems. This review summarizes the latest advancements in the application of resistance, capacitance, piezoelectric, triboelectric, optical fiber, and electromagnetic sensing mechanisms in underwater environments. By comparing the advantages and challenges of different sensing mechanisms, this paper provides a comprehensive overview of their developments in underwater manned systems and soft robots, with a focus on innovative applications in deformation, posture, tactile, and flow field sensing. Furthermore, this paper highlights that overcoming the bottlenecks in adaptability and long-term reliability of underwater flexible sensors requires a focus on multimodal integration, intelligent decoupling, and biomimetic integration technologies. These findings offer new insights and potential solutions for the future development of underwater flexible sensors.

     

  • loading
  • [1]
    RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553): 467-475. doi: 10.1038/nature14543
    [2]
    LASCHI C, MAZZOLAI B, CIANCHETTI M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities[J]. Sci Robot, 2016, 1(1): eaah3690. doi: 10.1126/scirobotics.aah3690
    [3]
    WANG Q H, KALANTAR-ZADEH K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol, 2012, 7(11): 699-712. doi: 10.1038/nnano.2012.193
    [4]
    TRUBY R L, LEWIS J A. Printing soft matter in three dimensions[J]. Nature, 2016, 540(7633): 371-378. doi: 10.1038/nature21003
    [5]
    李天勇, 丛宾, 连明华, 等. 一种电阻式水下位移传感器的研制[J]. 兵工自动化, 2001(1): 53-55.

    LI T Y, CONG B, LIAN M H, et al. Development of a resistance sensor for displacement between slabs under water[J]. Ordnance Industry Automation, 2001(1): 53-55.
    [6]
    QU J, YUAN Q, LI Z, et al. All-in-one strain-triboelectric sensors based on environment-friendly ionic hydrogel for wearable sensing and underwater soft robotic grasping[J]. Nano Energy, 2023, 111: 108387. doi: 10.1016/j.nanoen.2023.108387
    [7]
    LIANG J, GUO H, SUN L, et al. A nanocrack-based graphene/PDMS-encapsulated medical tape flexible sensor for motion detection of underwater robots[J]. Adv Mater Technol, 2025, e00620.
    [8]
    WANG Q, WANG Z, LI Z, et al. Multi-hierarchically porous SWNTs-TPU/C-WPU composite film for underwater self-powered multi-modal tactile information sensing[J]. Adv Funct Mater, 2025, e09538.
    [9]
    刘旭, 钟敬, 荣灿灿, 等. 考虑水下跨接电容效应的UMCR-WPT系统多参数辨识方法[EB/OL]. (2025-07-17)[2025-09-02]. https://doi.org/10.19595/j.cnki.1000-6753.tces.242393.
    [10]
    何常德, 张盛东, 张斌珍, 等. 面向水下应用的电容式微机械超声换能器[J]. 应用声学, 2022, 41(3): 405-411.

    HE C D, ZHANG S D, ZHANG B Z, et al. Capacitive micromachined ultrasonic transducer for underwater applications[J]. Journal of Applied Acoustics, 2022, 41(3): 405-411.
    [11]
    朴胜春, 雷亚辉, 张强, 等. 压电微机电系统水下特征信息检测传感微系统[J]. 哈尔滨工程大学学报, 2025, 46(8): 1635-1643, 1684.

    PIAO S C, LEI Y H, ZHANG Q, et al. Piezoelectric micro-electromechanical systems sensing microsystem for underwater feature information detection[J]. Journal of Harbin Engineering University, 2025, 46(8): 1635-1643, 1684.
    [12]
    郭成东, 陈宇航, 曹鑫林, 等. PVDF压电纤维仿生柔性传感器水下传感特性研究[J]. 压电与声光, 2022, 44(6): 868-872.

    GUO C D, CHEN Y H, CAO X L, et al. Research on underwater sensing characteristics of pvdf piezoelectric fiber biomimetic flexible sensor[J]. Piezoelectrics & Acoustooptics, 2022, 44(6): 868-872.
    [13]
    KONG Z, BOAHEN E K, KIM D J, et al. Ultrafast underwater self-healing piezo-ionic elastomer via dynamic hydrophobic-hydrolytic domains[J]. Nat Commun, 2024, 15(1): 2129. doi: 10.1038/s41467-024-46334-4
    [14]
    LIN B, YANG P, LIU W, et al. Flexible hydrogel sensors for real-time and synchronized monitoring of underwater multiple parameters based on piezoelectric elastomer/sodium alginate/carbon quantum dots composites[J]. Biomacromolecules, 2025, 26(7): 4230-4237. doi: 10.1021/acs.biomac.5c00241
    [15]
    QU J, CUI G, LI Z, et al. Advanced flexible sensing technologies for soft robots[J]. Adv Funct Mater, 2024, 34(29): 2401311. doi: 10.1002/adfm.202401311
    [16]
    YU P, WANG L, JIN J, Et al. A novel piezoelectric actuated underwater robotic finger[J]. Smart Mater Struct, 2019, 28(10): 105047. doi: 10.1088/1361-665X/ab3c3a
    [17]
    JIN T, SUN Z, LI L, et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat Commun, 2020, 11(1): 5381.
    [18]
    LI Y, LI Q , MA X, et al. A non-contact triboelectric vibration sensor with a spiral floating electrode structure for low-frequency vibration monitoring[J]. Nano Energy, 2025, 133: 110437.
    [19]
    XU P, LIU J, LIU B, et al. Deep-learning-assisted triboelectric whisker for near field perception and online state estimation of underwater vehicle[J]. Nano Energy, 2024, 129: 110011. doi: 10.1016/j.nanoen.2024.110011
    [20]
    徐鹏, 刘建华, 谢广明, 等. 基于柔性摩擦纳米发电机的水下仿生胡须传感器研究[J]. 兵工自动化, 2022, 41(12): 2-24.

    XU P, LIU J H, XIE G M, et al. Research on underwater bionic whisker sensor based on flexible friction nanogenerator[J]. Ordnance Industry Automation, 2022, 41(12): 2-24.
    [21]
    WANG T, LI C, GAO Z, et al. Triboelectric encoders for accurate and durable wearable motion sensing[J]. Device, 2024, 2(9): 100525 doi: 10.1016/j.device.2024.100525
    [22]
    韩玲娟, 王强, 范昕炜, 等. 分布式光纤传感水下天然气管道泄漏的SPE诊断法[J]. 激光与光电子学进展, 2016, 53(5): 269-274.

    HAN L J, WANG Q, FAN X W, et al. Underwater gas pipeline leakage diagnostic method by distributed optical fiber sensor based on SPE[J]. Laser & Optoelectronics Progress, 2016, 53(5): 269-274.
    [23]
    朱海, 李智忠, 孙荣光, 等. 高灵敏度光纤光栅水下压力传感研究[J]. 光电子激光, 2007, 18(5): 536-538.

    ZHU H, LI Z Z, SUN R G, et al. Research on fiber grating underwater pressure sensing with high sensitivity[J]. Journal of Optoelectronics·Laser, 2007, 18(5): 536-538.
    [24]
    MO L, ZHANG D, FU X, et al. An underwater proprioceptive soft actuator based on the flexible optical waveguide[J]. ROBOT, 2024, 46(2): 129-138.
    [25]
    ZHENG H, WU H, WANG Y, et al. High-sensitivity distributed optical fiber sensor for simultaneous hydrostatic pressure and temperature measurement based on birefringent frequency-scanning φ-OTDR[J]. Opt Laser Technol, 2024, 175: 110756. doi: 10.1016/j.optlastec.2024.110756
    [26]
    AZIL K, FERRIA K, BOUZID S. Cladless optical fiber sensor based on evanescent wave absorption for monitoring methylene blue induced water pollution[J]. J Opt Soc Am B, 2020, 37(11): A253-A258. doi: 10.1364/JOSAB.396646
    [27]
    BAI H, KIM Y S, SHEPHERD R F. Autonomous self-healing optical sensors for damage intelligent soft-bodied systems[J]. Sci Adv, 8(49): eabq2104.
    [28]
    孙常存, 袁鹏, 任志良, 等. 水下电磁波频率变化特性实验研究[J]. 水下无人系统学报, 2014, 22(1): 72-77.

    SUN C C, YUAN P, REN Z L, et al. Experimental research for exploring frequency variation characteristics of underwater electromagnetic wave[J]. Journal of Unmanned Undersea Systems, 2014, 22(1): 72-77.
    [29]
    ZHOU Y, ZHAO X, XU J, et al. A multimodal magnetoelastic artificial skin for underwater haptic sensing[J]. Sci Adv, 2024, 10(1): eadj8567. doi: 10.1126/sciadv.adj8567
    [30]
    DU T, HUGHES J, WAH S, et al. Underwater soft robot modeling and control with differentiable simulation[J]. IEEE Robot Autom Lett, 2021, 6(3): 4994-5001. doi: 10.1109/LRA.2021.3070305
    [31]
    HAMAMATSU Y, KUPYN P, GKLIVA R, et al. Underwater soft fin flapping motion with deep neural network based surrogate model[C]//2025 IEEE 8th International Conference on Soft Robotics(RoboSoft). Lausanne, Switzerland: IEEE, 2025: 1-6.
    [32]
    VICARI A, OBAYASHI N, STELLA F, et al. Proprioceptive sensing of soft tentacles with model based reconstruction for controller optimization[EB/OL]. [2025-08-06]. https://arxiv.org/pdf/2211.13536v1.
    [33]
    MICKLEM L, DONG H, GIORGIO-SERCHI F, et al. Closed-loop underwater soft robotic foil shape control using flexible e-skin[EB/OL]. [2025-08-06]. https://arxiv.org/pdf/2408.01130.
    [34]
    SANG G, YAN R, YIN B, et al. A compact multifunctional fiber sensor for simultaneous underwater measurement of salinity, temperature and strain[J]. Measurement, 2022, 194: 111039. doi: 10.1016/j.measurement.2022.111039
    [35]
    WANG H, TOTARO M, BECCAI L. Toward perceptive soft robots: progress and challenges[J]. Adv Sci, 2018, 5(9): 1800541. doi: 10.1002/advs.201800541
    [36]
    CHRISTOPHER W, MARKUS H, DEREK O, et al. Polymer sensors for underwater robot proprioception[J]. Sens Actuators Phys, 2023, 351: 114179. doi: 10.1016/j.sna.2023.114179
    [37]
    WANG S, SUN Z, DUAN S, et al. A Hydrogel-based self-sensing underwater actuator[J]. Micromachines, 2022, 13(10): 1779. doi: 10.3390/mi13101779
    [38]
    MURALI B S P, VISENTIN F, SADEGHI A, et al. Sensorized foam actuator with intrinsic proprioception and tunable stiffness behavior for soft robots[J]. Adv Intell Syst, 2 021, 3(6): 2100022.
    [39]
    SHEN Z, ZHAO Y, ZHONG H, et al. Soft origami optical-sensing actuator for underwater manipulation[J]. Frontiers in Robotics and AI, 2021, 7(2): 616128.
    [40]
    GUO N, HAN X, ZHONG S, et al. Proprioceptive state estimation for amphibious tactile sensing[J]. IEEE Trans Robot, 2024, 40: 4662-4676. doi: 10.1109/TRO.2024.3463509
    [41]
    JING R, ANDERSON M L, GARCIA J C P, et al. Self-sensing for proprioception and contact detection in soft robots using shape memory alloy artificial muscles[EB/OL]. [2025-06-07]. https://arxiv.org/pdf/2409.17111.
    [42]
    THURUTHEL T G, SHIH B, LASCHI C, et al. Soft robot perception using embedded soft sensors and recurrent neural networks[J]. Sci Robot, 2019, 4(26): eaav1488. doi: 10.1126/scirobotics.aav1488
    [43]
    VAN MEERBEEK I M, DE SA C M, SHEPHERD R F. Soft optoelectronic sensory foams with proprioception[J]. Sci Robot, 2018, 3(24): eaau2489. doi: 10.1126/scirobotics.aau2489
    [44]
    ZHANG Y, KONG D, SHI Y, et al. Recent progress on underwater soft robots: adhesion, grabbing, actuating, and sensing[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1196922. doi: 10.3389/fbioe.2023.1196922
    [45]
    YOUSSEF S M, SOLIMAN M, SALEH M A, et al. Underwater soft robotics: A review of bioinspiration in design, actuation, modeling, and control[J]. Micromachines, 2022, 13(1): 110. doi: 10.3390/mi13010110
    [46]
    LIU S, ZHANG D, FU X, et al. Tactile sensing for soft robotic manipulators in 50 MPa hydrostatic pressure environments[J]. Adv Intell Syst, 2023, 5(12): 2300296. doi: 10.1002/aisy.202300296
    [47]
    SUBAD R A, SAIKOT M M, PARK K. Soft multi-directional force sensor for underwater robotic application[J]. Sensors, 2022, 22(10): 3850 doi: 10.3390/s22103850
    [48]
    WANG T, GAO Z, LI C, et al. Bioinspired textured sensor arrays with early temporal processing for ultrafast robotic tactile recognition[J]. Mater Sci Eng R Rep, 2026, 167: 101113. doi: 10.1016/j.mser.2025.101113
    [49]
    ZHANG T, WANG R, CAO Q, et al. FlowSight: Vision-based artificial lateral line sensor for water flow perception[J]. IEEE Trans Robot, 2025, 41: 3260-3277. doi: 10.1109/TRO.2025.3567551
    [50]
    李原正, 王天润, 关堂镇, 等. 基于液态金属型摩擦纳米发电的水下仿生触须传感器[J]. 水下无人系统学报, 2024, 32(5): 794-800.

    LI Y Z, WANG T R, GUAN T Z, et al. Underwater biomimetic whisker sensor based on liquid metal and triboelectric nanogenerator[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 794-800.
    [51]
    MO L, ZHANG D, FU X, et al. A multidirectional external perception soft actuator based on flexible optical waveguide for underwater teleoperation[J]. Adv Intell Syst, 2023, 5(10): 2300029. doi: 10.1002/aisy.202300029
    [52]
    XIE Z, YUAN F, LIU J, et al. Octopus-inspired sensorized soft arm for environmental interaction[J]. Sci Robot, 8(84): eadh7852.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article Views(1) PDF Downloads(0) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return