• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Volume 33 Issue 5
Oct  2025
Turn off MathJax
Article Contents
ZHONG Shuqiao, SONG Chaoyang, ZHOU Zhiyuan, WAN Fang, LIN Jian. Underwater Adaptive End Effector Based on Biomimetic Grasping Mechanism of Soft-Rigid Gripper[J]. Journal of Unmanned Undersea Systems, 2025, 33(5): 818-825. doi: 10.11993/j.issn.2096-3920.2025-0092
Citation: ZHONG Shuqiao, SONG Chaoyang, ZHOU Zhiyuan, WAN Fang, LIN Jian. Underwater Adaptive End Effector Based on Biomimetic Grasping Mechanism of Soft-Rigid Gripper[J]. Journal of Unmanned Undersea Systems, 2025, 33(5): 818-825. doi: 10.11993/j.issn.2096-3920.2025-0092

Underwater Adaptive End Effector Based on Biomimetic Grasping Mechanism of Soft-Rigid Gripper

doi: 10.11993/j.issn.2096-3920.2025-0092
  • Received Date: 2025-07-23
  • Accepted Date: 2025-09-10
  • Rev Recd Date: 2025-09-09
  • Available Online: 2025-09-23
  • The underwater gripper serves as the end effector of underwater unmanned equipment, and its performance directly determines the effectiveness of the mission. Currently, commercial grippers are difficult to simultaneously meet the requirements of high load capacity and high adaptability, and it is hard to balance the dual demands of “non-destructive grasping” and “firm holding”. Inspired by lobster claws, this study proposed a novel biomimetic rigid-soft gripper, the “LobSTER Gripper”. It used a biomimetic reversed structure of soft fingers coated with rigid fingers: The soft fingers with passive compliance provided gentle initial contact, while internal rigid fingers ensured firm holding, enabling phased stiffness adaptation without complex drive control, it can also integrate visuo-tactile sensing at the base of the fingers to achieve precise perception and stable grasping of underwater targets. Experimental verification shows that the gripper achieves a 100% success rate in grasping in the pose disturbance scenario, significantly outperforming the traditional rigid gripper, which has an 80% success rate. The design offers a low-cost, reliable, and easily transferable solution for adaptive underwater grasping with significant engineering application value and promising promotion prospects.

     

  • loading
  • [1]
    LIU Y, ZHANG J, XIANG X, et al. Design, implementation and verification of hardware-in-the-loop control system for work-class ROVs[J]. Ocean Engineering, 2024, 313: 119605. doi: 10.1016/j.oceaneng.2024.119605
    [2]
    MAZZEO A, AGUZZI J, CALISTI M, et al. Marine robotics for deep-sea specimen collection: A systematic review of underwater grippers[J]. Sensors 2022, 22(2): 648.
    [3]
    SIVČEV S, COLEMAN J, OMERDIĆ E, et al. Underwater manipulators: A review[J]. Ocean Engineering, 2018, 163: 431-450. doi: 10.1016/j.oceaneng.2018.06.018
    [4]
    ZHANG Y, KONG D, SHI Y, et al. Recent progress on underwater soft robots: Adhesion, grabbing, actuating, and sensing[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1196922. doi: 10.3389/fbioe.2023.1196922
    [5]
    STUART H S, WANG S, CUTKOSKY M R. Tunable contact conditions and grasp hydrodynamics using gentle fingertip suction[J]. IEEE Transactions on Robotics, 2019, 35(2): 295-306. doi: 10.1109/TRO.2018.2880094
    [6]
    LICHT S, COLLINS E, MENDES M L, et al. Stronger at depth: Jamming grippers as deep sea sampling tools[J]. [J]. Soft Robotics, 2017, 4(4): 305-316. doi: 10.1089/soro.2017.0028
    [7]
    SUN J, ZHANG Q, LU Y, et al. A review of touching-based underwater robotic perception and manipulation[J]. Machines, 2025, 13(1): 41. doi: 10.3390/machines13010041
    [8]
    李原正, 王天润, 关堂镇, 等. 基于液态金属型摩擦纳米发电的水下仿生触须传感器[J]. 水下无人系统学报, 2024, 32(5): 794-800.

    LI Y Z, WANG T R, GUAN T Z, et al. Underwater biomimetic whisker sensor based on liquid metal and triboelectric nanogenerator[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 794-800.
    [9]
    WU M, ZHENG X, LIU R, et al. Glowing sucker octopus (stauroteuthis syrtensis)-inspired soft robotic gripper for underwater self-adaptive grasping and sensing[J]. [J]. Advanced Science, 2022, 9(17): 2104382. doi: 10.1002/advs.202104382
    [10]
    XU P, LIU J, LIU X, et al. A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception[J]. npj Flexible Electronics, 2022, 6(1): 25. doi: 10.1038/s41528-022-00160-0
    [11]
    LIU S, ZHANG D, FU X, et al. Tactile sensing for soft robotic manipulators in 50 MPa hydrostatic pressure environments[J]. Advanced Intelligent Systems, 2023, 5(12): 2300296. doi: 10.1002/aisy.202300296
    [12]
    JI H, LAN Y, NIE S, et al. Development of an anthropomorphic soft manipulator with rigid-flexible coupling for underwater adaptive grasping[J]. Soft Robotics, 2023, 10(6): 1070-1082. doi: 10.1089/soro.2022.0215
    [13]
    VAR S C, JOVANOVA J. Design of a soft underwater gripper with SMA actuation[C]//ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems(ASME). Austin, Texas, USA: ASME, 2023: 111702.
    [14]
    WU M, AFRIDI W H, WU J, et al. Octopus-inspired underwater soft robotic gripper with crawling and swimming capabilities[J]. Research, 2024, 7: 456. doi: 10.34133/research.0456
    [15]
    GUO N, HAN X D, ZHONG S Q, et al. Proprioceptive state estimation for amphibious tactile sensing[J]. IEEE Transactions on Robotics, 2024, 40: 4662-4676 . doi: 10.1109/TRO.2024.3463509
    [16]
    GUO N, HAN X, LIU X, et al. Autoencoding a soft touch to learn grasping from on-land to underwater[J]. Advanced Intelligent Systems, 2024, 6(1): 2300382. doi: 10.1002/aisy.202300382
    [17]
    LIU X, HAN X, HONG W, et al. Proprioceptive learning with soft polyhedral networks[J]. International Journal of Robotics Research, 2024, 43(12): 1916-1935. doi: 10.1177/02783649241238765
    [18]
    WU T, DONG Y, LIU X, et al. Vision-based tactile intelligence with soft robotic metamaterial[J]. Materials & Design, 2024, 238: 112629.
    [19]
    GALLOWAY K C, BECKER K P, PHILLIPS B, et al. Soft robotic grippers for biological sampling on deep reefs[J]. Soft robotics, 2016, 3(1): 23-33. doi: 10.1089/soro.2015.0019
    [20]
    SUO F, HUI X, HUA P, et al. A biomimetic rigid-soft hybrid underwater gripper with compliance, stability, precise control, and high load capacity[J]. IEEE Transactions on Robotics, 2025, 41: 3099-3112. doi: 10.1109/TRO.2025.3562458
    [21]
    KIM M, OH J, SON D. Layer-jamming soft gripper for improved stiffness control and underwater adhesion[J]. Extreme Mechanics Letters, 2025, 77: 102322. doi: 10.1016/j.eml.2025.102322
    [22]
    CHEN H, LI Y, XU P, et al. Octopus-inspired soft gripper with embedded triboelectric tactile sensor for underwater target recognition and grasp[J]. Nano Energy, 2025, 140: 111007. doi: 10.1016/j.nanoen.2025.111007
    [23]
    QU J, YUAN Q, LI Z, et al. All-in-one strain-triboelectric sensors based on environment-friendly ionic hydrogel for wearable sensing and underwater soft robotic grasping[J]. Nano Energy, 2023, 111: 108387. doi: 10.1016/j.nanoen.2023.108387
    [24]
    SONG Z, WANG Z, LIU B, et al. A soft gripper based on PneuNets structure with stiffness-variable-enhanced load capacity for object grasping[J]. Sensors and Actuators A: Physical, 2025, 383: 116253. doi: 10.1016/j.sna.2025.116253
    [25]
    SUBAD R A S I, CROSS L B, PARK K. Soft robotic hands and tactile sensors for underwater robotics[J]. Applied Mechanics, 2021, 2(2): 356-382. doi: 10.3390/applmech2020021
    [26]
    常宗瑜, 张扬, 郑方圆, 等. 水下机器人-机械手系统研究进展: 结构、建模与控制[J]. 机械工程学报, 2020, 56(19): 53-69. doi: 10.3901/JME.2020.19.053

    CHANG Z Y, ZHANG Y, ZHENG F Y, et al. Research progress of underwater vehicle-manipulator systems: Configuration, modeling and control[J]. Journal of Mechanical Engineering, 2020, 56(19): 53-69. doi: 10.3901/JME.2020.19.053
    [27]
    ZAREBIDOKI M, DHUPIA J S, LIAROKAPIS M, et al. A cable-driven underwater robotic system for delicate manipulation of marine biology samples[J]. Journal of Field Robotics, 2024, 41(8): 2615-2629. doi: 10.1002/rob.22381
    [28]
    SAKAGAMI N, TAKEUCHI K, KOGANEZAWA K. Numerical and experimental testing of underwater gripper with adjustable stiffness joints[C]//2020 IEEE/SICE International Symposium on System Integration(SII). Honolulu, HI, USA: IEEE, 2020: 1118-1122.
    [29]
    TEOH Z E, PHILLIPS B T, BECKER K P, et al. Rotary-actuated folding polyhedrons for midwater investigation of delicate marine organisms[J]. Science Robotics, 2018, 20(3): 5276.
    [30]
    LI G, WONG T W, SHIH B, et al. Bioinspired soft robots for deep-sea exploration[J]. Nature Communications, 2023, 14(1): 7097. doi: 10.1038/s41467-023-42882-3
    [31]
    SINATRA N R, TEEPLE C B, VOGT D M, et al. Ultragentle manipulation of delicate structures using a soft robotic gripper[J]. Science Robotics, 2019, 4(33): 5425. doi: 10.1126/scirobotics.aax5425
    [32]
    熊啸. 水下软体机器人仿生结构设计和研究[D]. 哈尔滨: 哈尔滨工程大学, 2024.
    [33]
    STUART H, WANG S, KHATIB O, et al. The ocean one hands: An adaptive design for robust marine manipulation[J]. The International Journal of Robotics Research, 2017, 36(2): 150-166. doi: 10.1177/0278364917694723
    [34]
    MUSCOLO G G, MORETTI G, CANNATA G. SUAS: A novel soft underwater artificial skin with capacitive transducers and hyperelastic membrane[J]. Robotica, 2019, 37(4): 756-777. doi: 10.1017/S0263574718001315
    [35]
    ZHANG J, HAN P, LIU Q, et al. The design of underwater tactile force sensor with differential pressure structure and backpropagation neural network calibration[J]. Measurement and Control, 2024, 57(2): 124-138. doi: 10.1177/00202940231194116
    [36]
    郭力楠. 基于压电式仿海豹胡须传感器的水下目标尾流感知技术研究[D]. 大连: 大连海事大学, 2024.
    [37]
    TIAN L, FU W Y, LEI C H, et al. Chapter 1-current status of anti-EGFR agents[M]//SHI H. Novel Sensitizing Agents for Therapeutic Anti-EGFR Antibodies, New York: Academic Press. 2023:1-12.
    [38]
    MERIBOUT M, ABULE T N, DEREGE O, et al. Tactile sensors: A review[J]. Measurement, 2024, 238: 115332. doi: 10.1016/j.measurement.2024.115332
    [39]
    SUBAD R A, SAIKOT M M, PARK K. Soft multi-directional force sensor for underwater robotic application[J] . Sensors, 2022; 22(10): 3850.
    [40]
    KAMPMANN P, BÜSKENS C, WANG S, et al. Adaptive control for underwater gripping systems[M]. AI Technology for Underwater Robots. Berlin: Springer, 2019.
    [41]
    JIANG H, HAN X, JING Y, et al. Rigid-soft interactive design of a lobster-inspired finger surface for enhanced grasping underwater[J]. Frontiers in Robotics and AI, 2021, 8: 78717.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article Views(44) PDF Downloads(5) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return