• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Turn off MathJax
Article Contents
XIA Zhijun, REN Yunchong, HAN Yunfeng, JIANG Lei. Research on Optimization of Acoustic Deception Countermeasure Based on Adaptive Mutation Particle Swarm[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0081
Citation: XIA Zhijun, REN Yunchong, HAN Yunfeng, JIANG Lei. Research on Optimization of Acoustic Deception Countermeasure Based on Adaptive Mutation Particle Swarm[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0081

Research on Optimization of Acoustic Deception Countermeasure Based on Adaptive Mutation Particle Swarm

doi: 10.11993/j.issn.2096-3920.2025-0081
  • Received Date: 2025-06-30
  • Accepted Date: 2025-08-18
  • Rev Recd Date: 2025-07-19
  • Available Online: 2026-01-12
  • In view of the lack of research on the cooperative combat system of multiple acoustic decoys in the decision-making system for surface ships to defend against underwater guidance device, as well as the problems of low efficiency and poor portability in the traditional exhaustive method, this paper introduces the particle swarm optimization algorithm to optimize the countermeasure model and improves the particle swarm algorithm by introducing adaptive inertia weight and multi-radius mutation mechanism. A multi-objective optimization function composed of defense success rate, minimum engagement distance and ship survival time is established. The optimization parameters include the ship's evasive course, the launch distance and angle of the first flying acoustic decoy, and the launch distance and angle of the second flying acoustic decoy. The simulation results show that the proposed improved particle swarm algorithm has higher efficiency, faster convergence speed and higher fitness value compared with the traditional algorithm. Through simulation, the differences in the optimal countermeasure strategies under different bearing angles and their tactical significance are revealed, which has important reference value for the formulation of defense strategies against underwater guidance device in real naval battles.

     

  • loading
  • [1]
    徐宁来, 张群飞, 王汝夯. 基于灰色决策理论的声诱饵作战效能评估[J]. 计算机仿真, 2010, 27(2): 5-9. doi: 10.3969/j.issn.1006-9348.2010.02.002

    XU N L, ZHANG Q F, WANG R P. Combat effectiveness evaluation of acoustic decoys based on grey decision theory[J]. Computer Simulation, 2010, 27(2): 5-9. doi: 10.3969/j.issn.1006-9348.2010.02.002
    [2]
    贾跃, 赵学涛, 林贤杰, 等. 基于BP神经网络的鱼雷作战效能模糊综合评估模型及其仿真[J]. 兵工学报, 2009, 30(9): 1232-1235. doi: 10.3321/j.issn:1000-1093.2009.09.016

    JIA Y, ZHAO X T, LIN X J, et al. Fuzzy comprehensive evaluation model of Torpedo combat Effectiveness based on BP neural network and its simulation[J]. Acta Ordnance Engineering, 2009, 30(9): 1232-1235. doi: 10.3321/j.issn:1000-1093.2009.09.016
    [3]
    彭会斌. 基于遗传算法的潜艇组合使用声诱饵防御鱼雷技术研究[J]. 指挥控制与仿真, 2018, 40(1): 52-55. doi: 10.3969/j.issn.1673-3819.2018.01.010

    PENG H B. Research on the Technology of submarine combined use of acoustic decoys for torpedo defense based on genetic algorithm[J]. Command Control and Simulation, 2018, 40(1): 52-55. doi: 10.3969/j.issn.1673-3819.2018.01.010
    [4]
    曾艳阳, 康凤举, 杨惠珍, 等. 基于粒子群的反鱼雷算法设计与仿真等.[J]. 系统仿真学报, 2012, 24(9): 2023-2026. doi: 10.16182/j.cnki.joss.2012.09.019

    ZENG Y Y, KANG F J, YANG H Z. et al. Against torpedo based on particle swarm algorithm design and simulation[J]. Journal of System Simulation, 2012, 24(9): 2023-2026. doi: 10.16182/j.cnki.joss.2012.09.019
    [5]
    侯文姝, 陆铭华. 基于粒子群算法的潜艇声诱饵防御声自导鱼雷研究[J]. 舰船科学技术, 2022, 44(18): 185-189. doi: 10.3404/j.issn.1672-7649.2022.18.039

    HOU W S, LU M H. Research on submarine acoustic decoy defense against acoustic homing torpedo based on particle swarm optimization[J]. Ship Science and Technology, 2022, 44(18): 185-189. doi: 10.3404/j.issn.1672-7649.2022.18.039
    [6]
    沈治河, 刘峰. 水面舰艇水声对抗系统对抗声自导鱼雷仿真分析及评估[J]. 军事运筹与系统工程, 2017, 31(1): 5-9. doi: 10.3969/j.issn.1672-8211.2017.01.001

    SHEN Z H, LIU F. Simulation analysis and evaluation of countermeasures acoustic homing torpedo for underwater acoustic countermeasures system of surface ships[J]. Military Operations Research and Systems Engineering, 2017, 31(1): 5-9. doi: 10.3969/j.issn.1672-8211.2017.01.001
    [7]
    付留芳, 周明, 等. 潜艇旋回机动规避对声自导鱼雷发现概率的影响分析[J]. 舰船电子工程, 2022, 42(11): 118-122. doi: 10.3969/j.issn.1672-9730.2022.11.026

    FU L F, ZHOU M, et al. Analysis of the influence of submarine turning maneuver avoidance on detection probability of acoustic homing torpedo[J]. Ship Electronics Engineering, 2022, 42(11): 118-122. doi: 10.3969/j.issn.1672-9730.2022.11.026
    [8]
    李明辉. 基于蒙特卡洛法的水下对抗效能推演评估研究[D]. 武汉: 中国舰船研究院, 2014.
    [9]
    侯文姝, 陆铭华. 潜艇声诱饵防御声自导鱼雷改进PSO算法[J]. 水下无人系统学报, 2023, 31(3): 436-441.

    HOU W S, LU M H. Improved PSO algorithm for submarine acoustic decoy defense against acoustic homing torpedo[J]. Journal of Underwater Unmanned Systems, 2019, 31(3): 436-441.
    [10]
    曲泓玥. 基于被动声纳实景仿真的水声对抗性能优化[D]. 哈尔滨: 哈尔滨工程大学, 2020.
    [11]
    张净宇, 王靖, 吴志雄, 等. 一种改进遗传算子的遗传算法组卷策略[J]. 智能计算机与应用, 2023, 13(5): 40-45. doi: 10.3969/j.issn.2095-2163.2023.05.007

    ZHANG J Y, WANG J, WU Z X, et al. A grouping strategy for genetic algorithm based on improved genetic operators[J]. Intelligent Computer and Applications, 2023, 13(5): 40-45. doi: 10.3969/j.issn.2095-2163.2023.05.007
    [12]
    曾艳阳, 康凤举, 杨惠珍, 等. 基于粒子群的反鱼雷算法设计与仿真[J]. 系统仿真学报, 2012, 24(9): 2023-2026. doi: 10.16182/j.cnki.joss.2012.09.019

    ZENG Y Y, KANG F J, YANG H Z, et al. Against torpedo based on particle swarm algorithm design and simulation[J]. Journal of System Simulation, 2012, 24(9): 2023-2026. doi: 10.16182/j.cnki.joss.2012.09.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article Views(1) PDF Downloads(0) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return