Citation: | CAI Yueyao, WANG Shenlong. A Review of Research Progress on Liquid Metal-Driven Soft Robotics[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0080 |
[1] |
SONG M, DANIELS K E, KIANI A, et al. Interfacial tension modulation of liquid metal via electrochemical oxidation[J]. Advanced Intelligent Systems, 2021, 3(8): 2100024. doi: 10.1002/aisy.202100024
|
[2] |
WANG X, LIU J. Recent advancements in liquid metal flexible printed electronics: Properties, technologies, and applications[J]. Micromachines, 2016, 7(12): 206. doi: 10.3390/mi7120206
|
[3] |
DICKEY M D. Stretchable and soft electronics using liquid metals[J]. Advanced Materials, 2017, 29(27): 1606425. doi: 10.1002/adma.201606425
|
[4] |
CLARKSON T W, MAGOS L. The toxicology of mercury and its chemical compounds[J]. Crit Rev Toxicol, 2006, 36(8): 609-662. doi: 10.1080/10408440600845619
|
[5] |
LU Y, HU Q, LIN Y, et al. Transformable liquid-metal nanomedicine[J]. Nature Communications, 2015, 6(1): 10066. doi: 10.1038/ncomms10066
|
[6] |
ZHAO Z, SONI S, LEE T, et al. Smart eutectic Gallium-Indium: from properties to applications[J]. Adv Mater, 2023, 35(1): e2203391. doi: 10.1002/adma.202203391
|
[7] |
DAENEKE T, KHOSHMANESH K, MAHMOOD N, et al. Liquid metals: Fundamentals and applications in chemistry[J]. Chem Soc Rev, 2018, 47(11): 4073-111. doi: 10.1039/C7CS00043J
|
[8] |
YAO Y Y, LIU J. Liquid metal wheeled small vehicle for cargo delivery[J]. RSC Advances, 2016, 6(61): 56482-88. doi: 10.1039/C6RA10629C
|
[9] |
SONAR H A, GERRATT A P, LACOUR S P, et al. Closed-loop haptic feedback control using a self-sensing soft pneumatic actuator skin[J]. Soft Robot, 2020, 7(1): 22-29. doi: 10.1089/soro.2019.0013
|
[10] |
YE J, YAO Y C, GAO J Y, et al. LM-Jelly: Liquid metal enabled biomimetic robotic jellyfish[J]. Soft Robot, 2022, 9(6): 1098-107. doi: 10.1089/soro.2021.0055
|
[11] |
张兵建, 杜荣华, 李汶柏, 等. 基于软电磁驱动的仿乌贼喷射推进机器鱼[J]. 中国科学: 物理学 力学 天文学, 2024, 54(6): 140-154.
ZHANG B J, DU R H, LI W B, et al. Squid jet-propelled robotic fish based on soft electromagnetic drive[J]. Sci Sin-Phys Mech Astron, 2024, 54: 264512.
|
[12] |
CLARKSON T W. The toxicology of mercury[J]. Crit Rev Clin Lab Sci, 1997, 34(4): 369-403. doi: 10.3109/10408369708998098
|
[13] |
JACOB A R, PAREKH D P, DICKEY M D, et al. Interfacial Rheology of Gallium-based liquid metals[J]. Langmuir, 2019, 35(36): 11774-83. doi: 10.1021/acs.langmuir.9b01821
|
[14] |
MORLEY N B, BURRIS J, CADWALLADER L C, et al. GaInSn usage in the research laboratory[J]. Review of Scientific Instruments, 2008, 79(5): 056107. doi: 10.1063/1.2930813
|
[15] |
PATEL G M, PATEL G C, PATEL R B, et al. Nanorobot: a versatile tool in nanomedicine[J]. J Drug Target, 2006, 14(2): 63-67. doi: 10.1080/10611860600612862
|
[16] |
郑再阳, 孙会彬, 黄维. 液态金属基可拉伸导电复合材料[J]. 化学进展, 2025, 37(3): 295-316.
ZHENG Z Y, SUN H B, HUANG W. Liquid metal-based stretchable conductive composites[J]. Progress in Chemistry, 2025, 37(3): 295-316.
|
[17] |
YU D, XUE Z, MU T. Eutectics: formation, properties, and applications[J]. Chem Soc Rev, 2021, 50(15): 8596-638. doi: 10.1039/D1CS00404B
|
[18] |
ZURAIQI K, ZAVABETI A, ALLIOUX F-M, et al. Liquid metals in catalysis for energy applications[J]. Joule, 2020, 4(11): 2290-321. doi: 10.1016/j.joule.2020.10.012
|
[19] |
YU S, KAVIANY M. Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles[J]. J Chem Phys, 2014, 140(6): 064303. doi: 10.1063/1.4865105
|
[20] |
CHIECHI R C, WEISS E A, DICKEY M D, et al. Eutectic gallium-indium(EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers[J]. Angew Chem Int Ed Engl, 2008, 47(1): 142-144. doi: 10.1002/anie.200703642
|
[21] |
KRAUS G G G, Gaertner M. Galinstan als quecksilberfreie füllflüssigkeit für thermometer und andere messinstrumente, DE19537016A1 [P/OL]. 1996-04-11.
|
[22] |
MÖLLENCAMP H, HUNTEMANN H, JANSEN W. Oszillationserscheinungen an einer bei raumtemperatur flüssigen Galliumlegierung[J]. Monatshefte für Chemie/ Chemical Monthly, 1999, 130(6): 741-751.
|
[23] |
FALKOVICH G, XU H, PUMIR A, et al. On Lagrangian single-particle statistics[J]. Physics of Fluids, 2012, 24(5): 055102. doi: 10.1063/1.4711397
|
[24] |
CUTINHO J, CHANG B S, OYOLA-REYNOSO S, et al. Autonomous thermal-oxidative composition inversion and texture tuning of liquid metal surfaces[J]. ACS Nano, 2018, 12(5): 4744-53. doi: 10.1021/acsnano.8b01438
|
[25] |
VILAN A, CAHEN D. Chemical modification of semiconductor surfaces for molecular electronics[J]. Chemical Reviews, 2017, 117(5): 4624-66. doi: 10.1021/acs.chemrev.6b00746
|
[26] |
ZHANG X, HAN X, SU J, et al. Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector[J]. Applied Physics A, 2012, 107(2): 255-260. doi: 10.1007/s00339-012-6886-6
|
[27] |
ANDERSON T J, ANSARA I. The Ga-In(Gallium-Indium) System[J]. Journal of Phase Equilibria, 1991, 12(1): 64-72. doi: 10.1007/BF02663677
|
[28] |
RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553): 467-475. doi: 10.1038/nature14543
|
[29] |
MEA H J, DELGADILLO L, WAN J. On-demand modulation of 3D-printed elastomers using programmable droplet inclusions[J]. Proc Natl Acad Sci U S A, 2020, 117(26): 14790-97. doi: 10.1073/pnas.1917289117
|
[30] |
HOANG T T, PHAN P T, THAI M T, et al. Magnetically engineered conductivity of soft liquid metal composites for robotic, wearable electronic, and medical applications[J]. Advanced Intelligent Systems, 2022, 4(12): 253198001.
|
[31] |
ZHANG Y, PAN C, LIU P, et al. Coaxially printed magnetic mechanical electrical hybrid structures with actuation and sensing functionalities[J]. Nat Commun, 2023, 14(1): 4428. doi: 10.1038/s41467-023-40109-z
|
[32] |
CHEN G, MA B, ZHANG J, et al. Reprogrammable magnetic soft robots based on low melting alloys[J]. Advanced Intelligent Systems, 2023, 5(10): 260053280.
|
[33] |
ARNOLD A, SU J, SABOLSKY E M. Nafion-Pt IPMC electroactive behavior changes in response to environmental nonequilibrium conditions[J]. Smart Materials and Structures, 2023, 32(5): 055014. doi: 10.1088/1361-665X/acc437
|
[34] |
YU R, HAN J, CHI Y, et al. Impact of minor alloy components on the electrocapillarity and electrochemistry of liquid metal fractals[J]. Advanced Functional Materials, 2023, 34(31): 2301348.
|
[35] |
TIMOSINA V, COLE T, LU H D, et al. A non-newtonian liquid metal enabled enhanced electrography[J]. Biosens Bioelectron, 2023, 235: 258824979.
|
[36] |
KIM M, PARK J J, CHO C, et al. Liquid metal based stretchable room temperature soldering sticker patch for stretchable electronics integration[J]. Advanced Functional Materials, 2023, 33(36): 2370214. doi: 10.1002/adfm.202370214
|
[37] |
LU H, ZHANG Q, HUANG X, et al. A reconfigurable and automatic platform for the on-demand production of stretchable conductive composites[J]. Smart Materials and Structures, 2023, 32(4): 045018. doi: 10.1088/1361-665X/acc221
|
[38] |
ZHANG J, YAO Y, LIU J. Autonomous convergence and divergence of the self-powered soft liquid metal vehicles[J]. Science Bulletin, 2015, 60(10): 943-951. doi: 10.1007/s11434-015-0786-z
|
[39] |
WANG Y, DUAN W, ZHOU C, et al. Phoretic liquid metal micro/nanomotors as intelligent filler for targeted microwelding[J]. Advanced Materials, 2019, 31(51): 1905067. doi: 10.1002/adma.201905067
|
[40] |
HANDSCHUH-WANG S, RAUF M, GAN T, et al. On the interaction of surfactants with gallium-based liquid metals[J]. Chemistry Select, 2021, 6(39): 10625-36.
|
[41] |
ZHANG J, YAO Y, SHENG L, et al. Self-fueled biomimetic liquid metal mollusk[J]. Advanced Materials, 2015, 27(16): 2648-55. doi: 10.1002/adma.201405438
|
[42] |
BROOKS A M, TASINKEVYCH M, SABRINA S, et al. Shape-directed rotation of homogeneous micromotors via catalytic self-electrophoresis[J]. Nature Communications, 2019, 10(1): 495. doi: 10.1038/s41467-019-08423-7
|
[43] |
XING Y, ZHOU M, XU T, et al. Core@Satellite Janus nanomotors with pH-responsive multi-phoretic propulsion[J]. Angewandte Chemie International Edition, 2020, 59(34): 14368-72. doi: 10.1002/anie.202006421
|
[44] |
YANG Q, XU L, ZHONG W, et al. Recent advances in motion control of micro/nanomotors[J]. Advanced Intelligent Systems, 2020, 2(8): 2000049. doi: 10.1002/aisy.202000049
|
[45] |
ZAVABETI A, DAENEKE T, CHRIMES A F, et al. Ionic imbalance induced self-propulsion of liquid metals[J]. Nature Communications, 2016, 7(1): 12402. doi: 10.1038/ncomms12402
|
[46] |
NOURHANI A, LAMMERT P E. Geometrical performance of self-phoretic colloids and microswimmers[J]. Physical Review Letters, 2016, 116(17): 178302. doi: 10.1103/PhysRevLett.116.178302
|
[47] |
HANDSCHUH-WANG S, GAN T, WANG T, et al. Surface tension of the oxide skin of gallium-based liquid metals[J]. Langmuir, 2021, 37(30): 9017-25. doi: 10.1021/acs.langmuir.1c00966
|
[48] |
XU D, HU J, PAN X, et al. Enzyme-powered liquid metal nanobots endowed with multiple biomedical functions[J]. ACS Nano, 2021, 15(7): 11543-54. doi: 10.1021/acsnano.1c01573
|
[49] |
HU L, WANG L, DING Y, et al. Manipulation of liquid metals on a graphite surface[J]. Advanced Materials, 2016, 28(41): 9210-17. doi: 10.1002/adma.201601639
|
[50] |
CHEN Y, CHEN X, ZHU Z, et al. 3D actuation of foam-core liquid metal droplets[J]. Soft Matter, 2023, 19(7): 1293-99. doi: 10.1039/D2SM01349E
|
[51] |
HU L, WANG H, WANG X, et al. Magnetic liquid metals manipulated in the three-dimensional free space[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8685-92.
|
[52] |
CHEN R, XIONG Q, SONG R-Z, et al. Magnetically controllable liquid metal marbles[J]. Advanced Materials Interfaces, 2019, 6(20): 1901057. doi: 10.1002/admi.201901057
|
[53] |
LIU M, WANG Y, KUAI Y, et al. Magnetically powered shape-transformable liquid metal micromotors[J]. Small, 2019, 15(52): 1905446. doi: 10.1002/smll.201905446
|
[54] |
ZHANG J, GUO R, LIU J. Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery[J]. J Mater Chem B, 2016, 4(32): 5349-57. doi: 10.1039/C6TB00996D
|
[55] |
HANDSCHUH-WANG S, CHEN Y, ZHU L, et al. Electric actuation of liquid metal droplets in acidified aqueous electrolyte[J]. Langmuir, 2019, 35(2): 372-381. doi: 10.1021/acs.langmuir.8b03384
|
[56] |
LI G, DU J, ZHANG A, et al. Electrochemically controllable actuation of liquid metal droplets based on Marangoni effect[J]. Journal of Applied Physics, 2019, 126(8): 084505. doi: 10.1063/1.5109082
|
[57] |
XUE R, LIU W, JIANG T, et al. Pumping of ionic liquids by liquid metal-enabled electrocapillary flow under DC-biased AC forcing[J]. Advanced Materials Interfaces, 2020, 7(14): 2000345. doi: 10.1002/admi.202000345
|
[58] |
COLE T, TANG S-Y. Liquid metals as soft electromechanical actuators[J]. Materials Advances, 2022, 3(1): 173-185. doi: 10.1039/D1MA00885D
|
[59] |
LI F, KUANG S, LI X, et al. Magnetically- and electrically-controllable functional liquid metal droplets[J]. Advanced Materials Technologies, 2019, 4(3): 1800694. doi: 10.1002/admt.201800694
|
[60] |
XIE J, LI F, KUANG S, et al. Modeling and motion control of a liquid metal droplet in a fluidic channel[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(2): 942-950. doi: 10.1109/TMECH.2020.2964387
|
[61] |
WANG D, LIN Z, ZHOU C, et al. Liquid metal gallium micromachines speed up in confining channels[J]. Advanced Intelligent Systems, 2019, 1(7): 1900064. doi: 10.1002/aisy.201900064
|
[62] |
TANG S-Y, KHOSHMANESH K, SIVAN V, et al. Liquid metal enabled pump[J]. Proceedings of the National Academy of Sciences, 2014, 111(9): 3304-09. doi: 10.1073/pnas.1319878111
|
[63] |
WANG D, GAO C, WANG W, et al. Shape-transformable, fusible rodlike swimming liquid metal nanomachine[J]. ACS Nano, 2018, 12(10): 10212-20. doi: 10.1021/acsnano.8b05203
|
[64] |
LI Z, ZHANG H, WANG D, et al. Reconfigurable assembly of active liquid metal colloidal cluster[J]. Angewandte Chemie International Edition, 2020, 59(45): 19884-88. doi: 10.1002/anie.202007911
|
[65] |
GAN T, SHANG W, HANDSCHUH-WANG S, et al. Light-induced shape morphing of liquid metal nanodroplets enabled by polydopamine coating[J]. Small, 2019, 15(9): 1804838. doi: 10.1002/smll.201804838
|
[66] |
TANG X, TANG S-Y, SIVAN V, et al. Photochemically induced motion of liquid metal marbles[J]. Applied Physics Letters, 2013, 103(17): 174104. doi: 10.1063/1.4826923
|
[67] |
XIAO Y, DING Y, LEI J, Et al. Bubble-induced in situ property modulation of liquid metal[J]. Advanced Materials Interfaces, 2021, 8(9): 2002204. doi: 10.1002/admi.202002204
|
[68] |
WANG B, KOSTARELOS K, NELSON B J, et al. Trends in micro-/nanorobotics: Materials development, actuation, localization, and system integration for biomedical applications[J]. Advanced Materials, 2021, 33(4): 2002047. doi: 10.1002/adma.202002047
|
[69] |
COMBS A W, SHIROMA W A, OHTA A T. Ferrofluidic actuation of liquid metal for radio-frequency applications[J]. Electronics Letters, 2018, 54(3): 151-153. doi: 10.1049/el.2017.4108
|
[70] |
OH S, LEE S, BYUN S H, et al. 3D shape‐morphing display enabled by electrothermally responsive, stiffness‐tunable liquid metal platform with stretchable electroluminescent device[J]. Advanced Functional Materials, 2023, 33(24): 2214766. doi: 10.1002/adfm.202214766
|
[71] |
SHU J, GE D A, WANG E, et al. A liquid metal artificial muscle[J]. Adv Mater, 2021, 33(43): e2103062. doi: 10.1002/adma.202103062
|
[72] |
MAO G, DRACK M, KARAMI-MOSAMMAM M, et al. Soft electromagnetic actuators[J]. Science Advances, 2020, 6(26): eabc0251. doi: 10.1126/sciadv.abc0251
|
[73] |
CHOI Y, SHIN G, YOON S J, et al. Soft electromagnetic sliding actuators for highly compliant planar motions using microfluidic conductive coil array[J]. Soft Robot, 2025, 12(1): 135-144. doi: 10.1089/soro.2024.0007
|
[74] |
LI N, ZHOU Y, LI Y, et al. Transformable 3D curved high-density liquid metal coils-an integrated unit for general soft actuation, sensing and communication[J]. Nature Communications, 2024, 15(1): 7679. doi: 10.1038/s41467-024-51648-4
|
[75] |
LU H, ZHAO M, ZHANG Q, et al. Liquid metal chameleon tongues: Modulating surface tension and phase transition to enable bioinspired soft actuators[J]. Advanced Intelligent Systems, 2024, 6(10): 2400231. doi: 10.1002/aisy.202400231
|
[76] |
ZHAO Z N, LIN J, ZHANG J, et al. Liquid metal enabled flexible electronic system for eye movement tracking[J]. IEEE Sensors Journal, 2018, 18(6): 2592-98. doi: 10.1109/JSEN.2018.2796121
|
[77] |
GUO R, WANG X, YU W, et al. A highly conductive and stretchable wearable liquid metal electronic skin for long-term conformable health monitoring[J]. Science China Technological Sciences, 2018, 61(7): 1031-37. doi: 10.1007/s11431-018-9253-9
|
[78] |
VARGA M, LADD C, MA S, et al. On-skin liquid metal inertial sensor[J]. Lab on a Chip, 2017, 17(19): 3272-78. doi: 10.1039/C7LC00735C
|
[79] |
JACKSON N, BUCKLEY J, CLARKE C, et al. Manufacturing methods of stretchable liquid metal-based antenna[J]. Microsystem Technologies, 2019, 25(8): 3175-84. doi: 10.1007/s00542-018-4234-2
|
[80] |
CHIOLERIO A, QUADRELLI M B. Smart fluid systems: The advent of autonomous liquid robotics[J]. Advanced Science, 2017, 4(7): 1700036. doi: 10.1002/advs.201700036
|
[81] |
JIN C, ZHANG J, LI X, et al. Injectable 3-D fabrication of medical electronics at the target biological tissues[J]. Scientific Reports, 2013, 3(1): 3442. doi: 10.1038/srep03442
|
[82] |
NAYAK S, LI Y, TAY W, et al. Liquid-metal-elastomer foam for moldable multi-functional triboelectric energy harvesting and force sensing[J]. Nano Energy, 2019, 64: 103912. doi: 10.1016/j.nanoen.2019.103912
|
[83] |
KIM T, KIM D-M, LEE B J, et al. Soft and deformable sensors based on liquid metals[J]. Sensors, 2019, 19(19): 4250. doi: 10.3390/s19194250
|
[84] |
ZHANG D, ZHANG J, WU Y, et al. Liquid metal interdigitated capacitive strain sensor with normal stress insensitivity[J]. Advanced Intelligent Systems, 2021, 4(4): 2100201.
|
[85] |
PINTO T, CHEN C, PINGER C, et al. 3D-printed liquid metal-based stretchable conductors and pressure sensors[J]. Smart Materials and Structures, 2021, 30(9): 095005. doi: 10.1088/1361-665X/ac15a1
|
[86] |
LUONG T, SEO S, JEON J, et al. Soft artificial muscle with proprioceptive feedback: design, modeling and control[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 4797-804. doi: 10.1109/LRA.2022.3152326
|
[87] |
ZHEN R, JIANG L, DING K, et al. Force perception for rigid-soft finger without force sensors: theoretical analysis, and model transfer[J]. IEEE Robotics and Automation Letters, 2024, 9(2): 1867-74. doi: 10.1109/LRA.2023.3347135
|
[88] |
JUNG J, LEE E, KIM J, et al. Ultra-thin multi-modal soft sensor using liquid-metal thin-film deposition for enhanced human-robot interaction[J]. IEEE Robotics and Automation Letters, 2024, 9(6): 5269-75. doi: 10.1109/LRA.2024.3389349
|
[89] |
CHOI H, KIM Y, KIM S, et al. Adhesive bioelectronics for sutureless epicardial interfacing[J]. Nature Electronics, 2023, 6(10): 779-789. doi: 10.1038/s41928-023-01023-w
|
[90] |
SOOMRO A M, KHALID M A U, SHAH I, et al. Highly stable soft strain sensor based on Gly-KCl filled sinusoidal fluidic channel for wearable and water-proof robotic applications[J]. Smart Materials and Structures, 2020, 29(2): 025011. doi: 10.1088/1361-665X/ab540b
|
[91] |
KOHLS N D, BALAK R, RUDDY B P, et al. Soft electromagnetic motor and soft magnetic sensors for synchronous rotary motion[J]. Soft Robot, 2023, 10(5): 912-922. doi: 10.1089/soro.2022.0075
|
[92] |
LIU T, SEN P, KIM C J. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices[J]. Journal of Microelectromechanical Systems, 2012, 21(2): 443-450. doi: 10.1109/JMEMS.2011.2174421
|
[93] |
TANG S-Y, SIVAN V, PETERSEN P, et al. Liquid metal actuator for inducing chaotic advection[J]. Advanced Functional Materials, 2014, 24(37): 5851-58. doi: 10.1002/adfm.201400689
|
[94] |
MA J-L, DONG H-X, HE Z-Z. Electrochemically enabled manipulation of gallium-based liquid metals within porous copper[J]. Materials Horizons, 2018, 5(4): 675-682. doi: 10.1039/C8MH00203G
|
[95] |
WANG E, SHU J, JIN H, et al. Liquid metal motor[J]. iScience, 2021, 24(1): 101911. doi: 10.1016/j.isci.2020.101911
|
[96] |
CHEN S, WANG H-Z, ZHAO R-Q, et al. Liquid Metal Composites[J]. Matter, 2020, 2(6): 1446-80. doi: 10.1016/j.matt.2020.03.016
|
[97] |
LI J, CHEN S, SUN M. Design and fabrication of a crawling robot based on a soft actuator[J]. Smart Materials and Structures, 2021, 30(12): 125018. doi: 10.1088/1361-665X/ac2e1b
|
[98] |
WANG B, ZHANG B, TAN Y, et al. Leech‐inspired shape‐encodable liquid metal robots for reconfigurable circuit welding and transient electronics[J]. Advanced Intelligent Systems, 2022, 4(9): 2200080. doi: 10.1002/aisy.202200080
|
[99] |
OH B, PARK Y G, JUNG H, et al. Untethered soft robotics with fully integrated wireless sensing and actuating systems for somatosensory and respiratory functions[J]. Soft Robot, 2020, 7(5): 564-573. doi: 10.1089/soro.2019.0066
|
[100] |
BARTKOWSKI P, PAWLISZAK L, CHEVALE S G, et al. Programmable shape-shifting soft robotic structure using liquid metal electromagnetic actuators[J]. Soft Robot, 2024, 11(5): 802-811. doi: 10.1089/soro.2023.0144
|
[101] |
XU L, ZHU C, LAMONT S, et al. Programming motion into materials using electricity-driven liquid crystal elastomer actuators[J]. Soft Robot, 2024, 11(3): 464-472. doi: 10.1089/soro.2023.0063
|
[102] |
ZHOU W, LIANG Q, CHEN T. 3D manipulation of magnetic liquid metals[J]. Advanced Intelligent Systems, 2020, 2(10): 1900170. doi: 10.1002/aisy.201900170
|