• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
CAI Yueyao, WANG Shenlong. A Review of Research Progress on Liquid Metal-Driven Soft Robotics[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0080
Citation: CAI Yueyao, WANG Shenlong. A Review of Research Progress on Liquid Metal-Driven Soft Robotics[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0080

A Review of Research Progress on Liquid Metal-Driven Soft Robotics

doi: 10.11993/j.issn.2096-3920.2025-0080
  • Received Date: 2025-06-27
  • Accepted Date: 2025-08-18
  • Rev Recd Date: 2025-08-14
  • Available Online: 2025-09-08
  • With the rapid advancement of key technologies in soft robotics, liquid metals have emerged as a focus in this field due to their unique properties, including low melting point, high electrical conductivity, superior thermal conductivity, and excellent fluidity. Gallium-based alloys have significantly enhanced their auxiliary application potential in actuation systems through approaches like magnetic reinforcement, electroactive enhancement, and structural optimization. As conductive materials and flexible electrodes, they demonstrate further promise in actuation, sensing, and multi-degree-of-freedom(multi-DOF) motion through approaches like magnetic reinforcement, electroactive enhancement, and structural optimization. This review systematically summarizes the functional characteristics, actuation mechanisms, and sensing technologies of liquid metals, with particular emphasis on their current applications and challenges in underwater soft robotics. To date, liquid metal-based actuators have achieved diverse actuation modes, including electrothermal, electrochemical, and magnetic driving mechanisms, while corresponding sensors have made breakthroughs in high-sensitivity strain detection, pressure sensing, and multimodal signal monitoring. Nevertheless, the realization of multi-DOF motion in underwater environments still faces technical challenges, such as complex actuation mechanisms, insufficient material stability, and imperfect control systems. Future research needs to further overcome these technical bottlenecks to advance the practical application of liquid metal-driven underwater soft robots.

     

  • loading
  • [1]
    SONG M, DANIELS K E, KIANI A, et al. Interfacial tension modulation of liquid metal via electrochemical oxidation[J]. Advanced Intelligent Systems, 2021, 3(8): 2100024. doi: 10.1002/aisy.202100024
    [2]
    WANG X, LIU J. Recent advancements in liquid metal flexible printed electronics: Properties, technologies, and applications[J]. Micromachines, 2016, 7(12): 206. doi: 10.3390/mi7120206
    [3]
    DICKEY M D. Stretchable and soft electronics using liquid metals[J]. Advanced Materials, 2017, 29(27): 1606425. doi: 10.1002/adma.201606425
    [4]
    CLARKSON T W, MAGOS L. The toxicology of mercury and its chemical compounds[J]. Crit Rev Toxicol, 2006, 36(8): 609-662. doi: 10.1080/10408440600845619
    [5]
    LU Y, HU Q, LIN Y, et al. Transformable liquid-metal nanomedicine[J]. Nature Communications, 2015, 6(1): 10066. doi: 10.1038/ncomms10066
    [6]
    ZHAO Z, SONI S, LEE T, et al. Smart eutectic Gallium-Indium: from properties to applications[J]. Adv Mater, 2023, 35(1): e2203391. doi: 10.1002/adma.202203391
    [7]
    DAENEKE T, KHOSHMANESH K, MAHMOOD N, et al. Liquid metals: Fundamentals and applications in chemistry[J]. Chem Soc Rev, 2018, 47(11): 4073-111. doi: 10.1039/C7CS00043J
    [8]
    YAO Y Y, LIU J. Liquid metal wheeled small vehicle for cargo delivery[J]. RSC Advances, 2016, 6(61): 56482-88. doi: 10.1039/C6RA10629C
    [9]
    SONAR H A, GERRATT A P, LACOUR S P, et al. Closed-loop haptic feedback control using a self-sensing soft pneumatic actuator skin[J]. Soft Robot, 2020, 7(1): 22-29. doi: 10.1089/soro.2019.0013
    [10]
    YE J, YAO Y C, GAO J Y, et al. LM-Jelly: Liquid metal enabled biomimetic robotic jellyfish[J]. Soft Robot, 2022, 9(6): 1098-107. doi: 10.1089/soro.2021.0055
    [11]
    张兵建, 杜荣华, 李汶柏, 等. 基于软电磁驱动的仿乌贼喷射推进机器鱼[J]. 中国科学: 物理学 力学 天文学, 2024, 54(6): 140-154.

    ZHANG B J, DU R H, LI W B, et al. Squid jet-propelled robotic fish based on soft electromagnetic drive[J]. Sci Sin-Phys Mech Astron, 2024, 54: 264512.
    [12]
    CLARKSON T W. The toxicology of mercury[J]. Crit Rev Clin Lab Sci, 1997, 34(4): 369-403. doi: 10.3109/10408369708998098
    [13]
    JACOB A R, PAREKH D P, DICKEY M D, et al. Interfacial Rheology of Gallium-based liquid metals[J]. Langmuir, 2019, 35(36): 11774-83. doi: 10.1021/acs.langmuir.9b01821
    [14]
    MORLEY N B, BURRIS J, CADWALLADER L C, et al. GaInSn usage in the research laboratory[J]. Review of Scientific Instruments, 2008, 79(5): 056107. doi: 10.1063/1.2930813
    [15]
    PATEL G M, PATEL G C, PATEL R B, et al. Nanorobot: a versatile tool in nanomedicine[J]. J Drug Target, 2006, 14(2): 63-67. doi: 10.1080/10611860600612862
    [16]
    郑再阳, 孙会彬, 黄维. 液态金属基可拉伸导电复合材料[J]. 化学进展, 2025, 37(3): 295-316.

    ZHENG Z Y, SUN H B, HUANG W. Liquid metal-based stretchable conductive composites[J]. Progress in Chemistry, 2025, 37(3): 295-316.
    [17]
    YU D, XUE Z, MU T. Eutectics: formation, properties, and applications[J]. Chem Soc Rev, 2021, 50(15): 8596-638. doi: 10.1039/D1CS00404B
    [18]
    ZURAIQI K, ZAVABETI A, ALLIOUX F-M, et al. Liquid metals in catalysis for energy applications[J]. Joule, 2020, 4(11): 2290-321. doi: 10.1016/j.joule.2020.10.012
    [19]
    YU S, KAVIANY M. Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles[J]. J Chem Phys, 2014, 140(6): 064303. doi: 10.1063/1.4865105
    [20]
    CHIECHI R C, WEISS E A, DICKEY M D, et al. Eutectic gallium-indium(EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers[J]. Angew Chem Int Ed Engl, 2008, 47(1): 142-144. doi: 10.1002/anie.200703642
    [21]
    KRAUS G G G, Gaertner M. Galinstan als quecksilberfreie füllflüssigkeit für thermometer und andere messinstrumente, DE19537016A1 [P/OL]. 1996-04-11.
    [22]
    MÖLLENCAMP H, HUNTEMANN H, JANSEN W. Oszillationserscheinungen an einer bei raumtemperatur flüssigen Galliumlegierung[J]. Monatshefte für Chemie/ Chemical Monthly, 1999, 130(6): 741-751.
    [23]
    FALKOVICH G, XU H, PUMIR A, et al. On Lagrangian single-particle statistics[J]. Physics of Fluids, 2012, 24(5): 055102. doi: 10.1063/1.4711397
    [24]
    CUTINHO J, CHANG B S, OYOLA-REYNOSO S, et al. Autonomous thermal-oxidative composition inversion and texture tuning of liquid metal surfaces[J]. ACS Nano, 2018, 12(5): 4744-53. doi: 10.1021/acsnano.8b01438
    [25]
    VILAN A, CAHEN D. Chemical modification of semiconductor surfaces for molecular electronics[J]. Chemical Reviews, 2017, 117(5): 4624-66. doi: 10.1021/acs.chemrev.6b00746
    [26]
    ZHANG X, HAN X, SU J, et al. Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector[J]. Applied Physics A, 2012, 107(2): 255-260. doi: 10.1007/s00339-012-6886-6
    [27]
    ANDERSON T J, ANSARA I. The Ga-In(Gallium-Indium) System[J]. Journal of Phase Equilibria, 1991, 12(1): 64-72. doi: 10.1007/BF02663677
    [28]
    RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521(7553): 467-475. doi: 10.1038/nature14543
    [29]
    MEA H J, DELGADILLO L, WAN J. On-demand modulation of 3D-printed elastomers using programmable droplet inclusions[J]. Proc Natl Acad Sci U S A, 2020, 117(26): 14790-97. doi: 10.1073/pnas.1917289117
    [30]
    HOANG T T, PHAN P T, THAI M T, et al. Magnetically engineered conductivity of soft liquid metal composites for robotic, wearable electronic, and medical applications[J]. Advanced Intelligent Systems, 2022, 4(12): 253198001.
    [31]
    ZHANG Y, PAN C, LIU P, et al. Coaxially printed magnetic mechanical electrical hybrid structures with actuation and sensing functionalities[J]. Nat Commun, 2023, 14(1): 4428. doi: 10.1038/s41467-023-40109-z
    [32]
    CHEN G, MA B, ZHANG J, et al. Reprogrammable magnetic soft robots based on low melting alloys[J]. Advanced Intelligent Systems, 2023, 5(10): 260053280.
    [33]
    ARNOLD A, SU J, SABOLSKY E M. Nafion-Pt IPMC electroactive behavior changes in response to environmental nonequilibrium conditions[J]. Smart Materials and Structures, 2023, 32(5): 055014. doi: 10.1088/1361-665X/acc437
    [34]
    YU R, HAN J, CHI Y, et al. Impact of minor alloy components on the electrocapillarity and electrochemistry of liquid metal fractals[J]. Advanced Functional Materials, 2023, 34(31): 2301348.
    [35]
    TIMOSINA V, COLE T, LU H D, et al. A non-newtonian liquid metal enabled enhanced electrography[J]. Biosens Bioelectron, 2023, 235: 258824979.
    [36]
    KIM M, PARK J J, CHO C, et al. Liquid metal based stretchable room temperature soldering sticker patch for stretchable electronics integration[J]. Advanced Functional Materials, 2023, 33(36): 2370214. doi: 10.1002/adfm.202370214
    [37]
    LU H, ZHANG Q, HUANG X, et al. A reconfigurable and automatic platform for the on-demand production of stretchable conductive composites[J]. Smart Materials and Structures, 2023, 32(4): 045018. doi: 10.1088/1361-665X/acc221
    [38]
    ZHANG J, YAO Y, LIU J. Autonomous convergence and divergence of the self-powered soft liquid metal vehicles[J]. Science Bulletin, 2015, 60(10): 943-951. doi: 10.1007/s11434-015-0786-z
    [39]
    WANG Y, DUAN W, ZHOU C, et al. Phoretic liquid metal micro/nanomotors as intelligent filler for targeted microwelding[J]. Advanced Materials, 2019, 31(51): 1905067. doi: 10.1002/adma.201905067
    [40]
    HANDSCHUH-WANG S, RAUF M, GAN T, et al. On the interaction of surfactants with gallium-based liquid metals[J]. Chemistry Select, 2021, 6(39): 10625-36.
    [41]
    ZHANG J, YAO Y, SHENG L, et al. Self-fueled biomimetic liquid metal mollusk[J]. Advanced Materials, 2015, 27(16): 2648-55. doi: 10.1002/adma.201405438
    [42]
    BROOKS A M, TASINKEVYCH M, SABRINA S, et al. Shape-directed rotation of homogeneous micromotors via catalytic self-electrophoresis[J]. Nature Communications, 2019, 10(1): 495. doi: 10.1038/s41467-019-08423-7
    [43]
    XING Y, ZHOU M, XU T, et al. Core@Satellite Janus nanomotors with pH-responsive multi-phoretic propulsion[J]. Angewandte Chemie International Edition, 2020, 59(34): 14368-72. doi: 10.1002/anie.202006421
    [44]
    YANG Q, XU L, ZHONG W, et al. Recent advances in motion control of micro/nanomotors[J]. Advanced Intelligent Systems, 2020, 2(8): 2000049. doi: 10.1002/aisy.202000049
    [45]
    ZAVABETI A, DAENEKE T, CHRIMES A F, et al. Ionic imbalance induced self-propulsion of liquid metals[J]. Nature Communications, 2016, 7(1): 12402. doi: 10.1038/ncomms12402
    [46]
    NOURHANI A, LAMMERT P E. Geometrical performance of self-phoretic colloids and microswimmers[J]. Physical Review Letters, 2016, 116(17): 178302. doi: 10.1103/PhysRevLett.116.178302
    [47]
    HANDSCHUH-WANG S, GAN T, WANG T, et al. Surface tension of the oxide skin of gallium-based liquid metals[J]. Langmuir, 2021, 37(30): 9017-25. doi: 10.1021/acs.langmuir.1c00966
    [48]
    XU D, HU J, PAN X, et al. Enzyme-powered liquid metal nanobots endowed with multiple biomedical functions[J]. ACS Nano, 2021, 15(7): 11543-54. doi: 10.1021/acsnano.1c01573
    [49]
    HU L, WANG L, DING Y, et al. Manipulation of liquid metals on a graphite surface[J]. Advanced Materials, 2016, 28(41): 9210-17. doi: 10.1002/adma.201601639
    [50]
    CHEN Y, CHEN X, ZHU Z, et al. 3D actuation of foam-core liquid metal droplets[J]. Soft Matter, 2023, 19(7): 1293-99. doi: 10.1039/D2SM01349E
    [51]
    HU L, WANG H, WANG X, et al. Magnetic liquid metals manipulated in the three-dimensional free space[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8685-92.
    [52]
    CHEN R, XIONG Q, SONG R-Z, et al. Magnetically controllable liquid metal marbles[J]. Advanced Materials Interfaces, 2019, 6(20): 1901057. doi: 10.1002/admi.201901057
    [53]
    LIU M, WANG Y, KUAI Y, et al. Magnetically powered shape-transformable liquid metal micromotors[J]. Small, 2019, 15(52): 1905446. doi: 10.1002/smll.201905446
    [54]
    ZHANG J, GUO R, LIU J. Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery[J]. J Mater Chem B, 2016, 4(32): 5349-57. doi: 10.1039/C6TB00996D
    [55]
    HANDSCHUH-WANG S, CHEN Y, ZHU L, et al. Electric actuation of liquid metal droplets in acidified aqueous electrolyte[J]. Langmuir, 2019, 35(2): 372-381. doi: 10.1021/acs.langmuir.8b03384
    [56]
    LI G, DU J, ZHANG A, et al. Electrochemically controllable actuation of liquid metal droplets based on Marangoni effect[J]. Journal of Applied Physics, 2019, 126(8): 084505. doi: 10.1063/1.5109082
    [57]
    XUE R, LIU W, JIANG T, et al. Pumping of ionic liquids by liquid metal-enabled electrocapillary flow under DC-biased AC forcing[J]. Advanced Materials Interfaces, 2020, 7(14): 2000345. doi: 10.1002/admi.202000345
    [58]
    COLE T, TANG S-Y. Liquid metals as soft electromechanical actuators[J]. Materials Advances, 2022, 3(1): 173-185. doi: 10.1039/D1MA00885D
    [59]
    LI F, KUANG S, LI X, et al. Magnetically- and electrically-controllable functional liquid metal droplets[J]. Advanced Materials Technologies, 2019, 4(3): 1800694. doi: 10.1002/admt.201800694
    [60]
    XIE J, LI F, KUANG S, et al. Modeling and motion control of a liquid metal droplet in a fluidic channel[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(2): 942-950. doi: 10.1109/TMECH.2020.2964387
    [61]
    WANG D, LIN Z, ZHOU C, et al. Liquid metal gallium micromachines speed up in confining channels[J]. Advanced Intelligent Systems, 2019, 1(7): 1900064. doi: 10.1002/aisy.201900064
    [62]
    TANG S-Y, KHOSHMANESH K, SIVAN V, et al. Liquid metal enabled pump[J]. Proceedings of the National Academy of Sciences, 2014, 111(9): 3304-09. doi: 10.1073/pnas.1319878111
    [63]
    WANG D, GAO C, WANG W, et al. Shape-transformable, fusible rodlike swimming liquid metal nanomachine[J]. ACS Nano, 2018, 12(10): 10212-20. doi: 10.1021/acsnano.8b05203
    [64]
    LI Z, ZHANG H, WANG D, et al. Reconfigurable assembly of active liquid metal colloidal cluster[J]. Angewandte Chemie International Edition, 2020, 59(45): 19884-88. doi: 10.1002/anie.202007911
    [65]
    GAN T, SHANG W, HANDSCHUH-WANG S, et al. Light-induced shape morphing of liquid metal nanodroplets enabled by polydopamine coating[J]. Small, 2019, 15(9): 1804838. doi: 10.1002/smll.201804838
    [66]
    TANG X, TANG S-Y, SIVAN V, et al. Photochemically induced motion of liquid metal marbles[J]. Applied Physics Letters, 2013, 103(17): 174104. doi: 10.1063/1.4826923
    [67]
    XIAO Y, DING Y, LEI J, Et al. Bubble-induced in situ property modulation of liquid metal[J]. Advanced Materials Interfaces, 2021, 8(9): 2002204. doi: 10.1002/admi.202002204
    [68]
    WANG B, KOSTARELOS K, NELSON B J, et al. Trends in micro-/nanorobotics: Materials development, actuation, localization, and system integration for biomedical applications[J]. Advanced Materials, 2021, 33(4): 2002047. doi: 10.1002/adma.202002047
    [69]
    COMBS A W, SHIROMA W A, OHTA A T. Ferrofluidic actuation of liquid metal for radio-frequency applications[J]. Electronics Letters, 2018, 54(3): 151-153. doi: 10.1049/el.2017.4108
    [70]
    OH S, LEE S, BYUN S H, et al. 3D shape‐morphing display enabled by electrothermally responsive, stiffness‐tunable liquid metal platform with stretchable electroluminescent device[J]. Advanced Functional Materials, 2023, 33(24): 2214766. doi: 10.1002/adfm.202214766
    [71]
    SHU J, GE D A, WANG E, et al. A liquid metal artificial muscle[J]. Adv Mater, 2021, 33(43): e2103062. doi: 10.1002/adma.202103062
    [72]
    MAO G, DRACK M, KARAMI-MOSAMMAM M, et al. Soft electromagnetic actuators[J]. Science Advances, 2020, 6(26): eabc0251. doi: 10.1126/sciadv.abc0251
    [73]
    CHOI Y, SHIN G, YOON S J, et al. Soft electromagnetic sliding actuators for highly compliant planar motions using microfluidic conductive coil array[J]. Soft Robot, 2025, 12(1): 135-144. doi: 10.1089/soro.2024.0007
    [74]
    LI N, ZHOU Y, LI Y, et al. Transformable 3D curved high-density liquid metal coils-an integrated unit for general soft actuation, sensing and communication[J]. Nature Communications, 2024, 15(1): 7679. doi: 10.1038/s41467-024-51648-4
    [75]
    LU H, ZHAO M, ZHANG Q, et al. Liquid metal chameleon tongues: Modulating surface tension and phase transition to enable bioinspired soft actuators[J]. Advanced Intelligent Systems, 2024, 6(10): 2400231. doi: 10.1002/aisy.202400231
    [76]
    ZHAO Z N, LIN J, ZHANG J, et al. Liquid metal enabled flexible electronic system for eye movement tracking[J]. IEEE Sensors Journal, 2018, 18(6): 2592-98. doi: 10.1109/JSEN.2018.2796121
    [77]
    GUO R, WANG X, YU W, et al. A highly conductive and stretchable wearable liquid metal electronic skin for long-term conformable health monitoring[J]. Science China Technological Sciences, 2018, 61(7): 1031-37. doi: 10.1007/s11431-018-9253-9
    [78]
    VARGA M, LADD C, MA S, et al. On-skin liquid metal inertial sensor[J]. Lab on a Chip, 2017, 17(19): 3272-78. doi: 10.1039/C7LC00735C
    [79]
    JACKSON N, BUCKLEY J, CLARKE C, et al. Manufacturing methods of stretchable liquid metal-based antenna[J]. Microsystem Technologies, 2019, 25(8): 3175-84. doi: 10.1007/s00542-018-4234-2
    [80]
    CHIOLERIO A, QUADRELLI M B. Smart fluid systems: The advent of autonomous liquid robotics[J]. Advanced Science, 2017, 4(7): 1700036. doi: 10.1002/advs.201700036
    [81]
    JIN C, ZHANG J, LI X, et al. Injectable 3-D fabrication of medical electronics at the target biological tissues[J]. Scientific Reports, 2013, 3(1): 3442. doi: 10.1038/srep03442
    [82]
    NAYAK S, LI Y, TAY W, et al. Liquid-metal-elastomer foam for moldable multi-functional triboelectric energy harvesting and force sensing[J]. Nano Energy, 2019, 64: 103912. doi: 10.1016/j.nanoen.2019.103912
    [83]
    KIM T, KIM D-M, LEE B J, et al. Soft and deformable sensors based on liquid metals[J]. Sensors, 2019, 19(19): 4250. doi: 10.3390/s19194250
    [84]
    ZHANG D, ZHANG J, WU Y, et al. Liquid metal interdigitated capacitive strain sensor with normal stress insensitivity[J]. Advanced Intelligent Systems, 2021, 4(4): 2100201.
    [85]
    PINTO T, CHEN C, PINGER C, et al. 3D-printed liquid metal-based stretchable conductors and pressure sensors[J]. Smart Materials and Structures, 2021, 30(9): 095005. doi: 10.1088/1361-665X/ac15a1
    [86]
    LUONG T, SEO S, JEON J, et al. Soft artificial muscle with proprioceptive feedback: design, modeling and control[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 4797-804. doi: 10.1109/LRA.2022.3152326
    [87]
    ZHEN R, JIANG L, DING K, et al. Force perception for rigid-soft finger without force sensors: theoretical analysis, and model transfer[J]. IEEE Robotics and Automation Letters, 2024, 9(2): 1867-74. doi: 10.1109/LRA.2023.3347135
    [88]
    JUNG J, LEE E, KIM J, et al. Ultra-thin multi-modal soft sensor using liquid-metal thin-film deposition for enhanced human-robot interaction[J]. IEEE Robotics and Automation Letters, 2024, 9(6): 5269-75. doi: 10.1109/LRA.2024.3389349
    [89]
    CHOI H, KIM Y, KIM S, et al. Adhesive bioelectronics for sutureless epicardial interfacing[J]. Nature Electronics, 2023, 6(10): 779-789. doi: 10.1038/s41928-023-01023-w
    [90]
    SOOMRO A M, KHALID M A U, SHAH I, et al. Highly stable soft strain sensor based on Gly-KCl filled sinusoidal fluidic channel for wearable and water-proof robotic applications[J]. Smart Materials and Structures, 2020, 29(2): 025011. doi: 10.1088/1361-665X/ab540b
    [91]
    KOHLS N D, BALAK R, RUDDY B P, et al. Soft electromagnetic motor and soft magnetic sensors for synchronous rotary motion[J]. Soft Robot, 2023, 10(5): 912-922. doi: 10.1089/soro.2022.0075
    [92]
    LIU T, SEN P, KIM C J. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices[J]. Journal of Microelectromechanical Systems, 2012, 21(2): 443-450. doi: 10.1109/JMEMS.2011.2174421
    [93]
    TANG S-Y, SIVAN V, PETERSEN P, et al. Liquid metal actuator for inducing chaotic advection[J]. Advanced Functional Materials, 2014, 24(37): 5851-58. doi: 10.1002/adfm.201400689
    [94]
    MA J-L, DONG H-X, HE Z-Z. Electrochemically enabled manipulation of gallium-based liquid metals within porous copper[J]. Materials Horizons, 2018, 5(4): 675-682. doi: 10.1039/C8MH00203G
    [95]
    WANG E, SHU J, JIN H, et al. Liquid metal motor[J]. iScience, 2021, 24(1): 101911. doi: 10.1016/j.isci.2020.101911
    [96]
    CHEN S, WANG H-Z, ZHAO R-Q, et al. Liquid Metal Composites[J]. Matter, 2020, 2(6): 1446-80. doi: 10.1016/j.matt.2020.03.016
    [97]
    LI J, CHEN S, SUN M. Design and fabrication of a crawling robot based on a soft actuator[J]. Smart Materials and Structures, 2021, 30(12): 125018. doi: 10.1088/1361-665X/ac2e1b
    [98]
    WANG B, ZHANG B, TAN Y, et al. Leech‐inspired shape‐encodable liquid metal robots for reconfigurable circuit welding and transient electronics[J]. Advanced Intelligent Systems, 2022, 4(9): 2200080. doi: 10.1002/aisy.202200080
    [99]
    OH B, PARK Y G, JUNG H, et al. Untethered soft robotics with fully integrated wireless sensing and actuating systems for somatosensory and respiratory functions[J]. Soft Robot, 2020, 7(5): 564-573. doi: 10.1089/soro.2019.0066
    [100]
    BARTKOWSKI P, PAWLISZAK L, CHEVALE S G, et al. Programmable shape-shifting soft robotic structure using liquid metal electromagnetic actuators[J]. Soft Robot, 2024, 11(5): 802-811. doi: 10.1089/soro.2023.0144
    [101]
    XU L, ZHU C, LAMONT S, et al. Programming motion into materials using electricity-driven liquid crystal elastomer actuators[J]. Soft Robot, 2024, 11(3): 464-472. doi: 10.1089/soro.2023.0063
    [102]
    ZHOU W, LIANG Q, CHEN T. 3D manipulation of magnetic liquid metals[J]. Advanced Intelligent Systems, 2020, 2(10): 1900170. doi: 10.1002/aisy.201900170
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article Views(2) PDF Downloads(2) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return