• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
YU Pingyang, WANG Honglei, YANG Yixin. Research on Comprehensive Detection Methods for Weak Signals in Underwater Target Shaft Frequency Electric Fields[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0079
Citation: YU Pingyang, WANG Honglei, YANG Yixin. Research on Comprehensive Detection Methods for Weak Signals in Underwater Target Shaft Frequency Electric Fields[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0079

Research on Comprehensive Detection Methods for Weak Signals in Underwater Target Shaft Frequency Electric Fields

doi: 10.11993/j.issn.2096-3920.2025-0079
  • Received Date: 2025-06-17
  • Accepted Date: 2025-09-08
  • Rev Recd Date: 2025-08-27
  • Available Online: 2025-11-18
  • To address the issue of weak target signals that are easily masked by noise in the detection of ship shaft frequency electric field signals, this paper proposes an electric field signal detection method based on the principle of ‘priority detection and selective enhancement.’ First, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is combined with narrowband power spectrum energy peak entropy ratio (EPER) features. Then, sliding window and dynamic threshold techniques are used to detect the target signal. After successful detection, the proposed method triggers a tri-stable stochastic resonance and variable step-size least mean P-norm (VSS-LMP) enhancement mechanism to further enhance the spectral characteristics of the target signal, thereby enabling the extraction of the target signal's characteristic frequency. Simulation results show that the proposed method achieves a detection accuracy rate exceeding 85% under a signal-to-noise ratio of -12 dB, with a false detection rate below 30%, and can accurately extract the target signal's characteristic frequency, providing a feasible technical approach for real-time monitoring of weak electromagnetic field signals from ships.

     

  • loading
  • [1]
    陈家林, 徐灏, 袁奕博, 等. 水下实时综合电磁探测系统设计[J]. 水下无人系统学报, 2023, 31(4): 600-606.

    CHEN J L, XU H, YUAN Y B, et al. Design of an underwater real-time integrated electromagnetic detection system[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 600-606.
    [2]
    李松, 石敏, 栾经德, 等. 舰船轴频电场信号特征提取与检测方法[J]. 兵工学报, 2015, 36(S2): 220-224.

    LI S, SHI M, LUAN J D, et al. The feature extraction and detection for shaft-rate electric field of a ship[J]. Acta armamentarii, 2015, 36(S2): 220-224.
    [3]
    李越, 张伽伟, 程锦房. 基于信号特征的舰船轴频电场检测改进算法[J]. 水下无人系统学报, 2019, 27(4): 398-405.

    LI YUE, ZHANG J W, CHENG J F. Improved detection algorithm of ship’s shaft-frequency electric field based on signal features[J]. Journal of Unmanned Undersea Systems, 2019, 27(4): 398-405.
    [4]
    赵文春, 姜润翔, 喻鹏, 等. 基于轴频电场线谱特征的目标检测及识别[J]. 兵工学报, 2020, 41(6): 1165.

    ZHAO W C, JIANG R X, YU P, et al. Detection and identification of ship shaft-rate electric field based on line-spectrum characteristics[J]. Acta Armamentarii, 2020, 41(6): 1165.
    [5]
    李婧, 韩鹏, 朱莹. 一种改进的随机共振技术在舰船轴频电场信号检测中的应用[J]. 国外电子测量技术, 2021, 40(4): 130-134.

    LI J, HAN P, ZHU Y. Application of an improved stochastic resonance technique detecting ship’s shaft-rate electric field signal[J]. Foreign Electronic Measurement Technology, 2021, 40(4): 130-134.
    [6]
    胡鹏, 龚沈光, 蔡旭东. 自适应线谱增强算法改进及其在轴频电场信号检测中的应用[J]. 武汉理工大学学报(交通科学与工程版), 2012, 36(06): 1217-1220.

    HU P, GONG S G, CAI X D. Improvement of adaptive line enhancement and its application in detection of ship shaft-rate electric field signal[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2012, 36(06): 1217-1220.
    [7]
    喻鹏, 程锦房, 张伽伟, 等. 基于Rao检测器的舰船轴频电场滑动门限检测方法[J]. 兵工学报, 2021, 42(4): 827.

    YU P, CHENG J F, ZHANG J W, et al. Ship shaft-rate electric field sliding threshold detection method based on rao detector[J]. Acta Armamentarii, 2021, 42(4): 827.
    [8]
    程锐, 姜润翔, 龚沈光. 基于EMD和4阶累积量的船舶轴频电场线谱提取[J]. 舰船科学技术, 2016, 38(1): 94-98.

    CHENG R, JIANG R X, GONG S G. Extraction of line spectrum of the ship shaft-rate electric field based on EMD and fourth-order cumulant[J]. Ship Science and Technology, 2016, 38(1): 94-98.
    [9]
    何芳, 王向军, 王晓蓓. 舰船轴频电场线谱提取方法及仿真研究[J]. 计算机仿真, 2015, 32(9): 5-9.

    HE F, WANG X J, WANG X B. Simulation of ship shaft-rate electric field line-spectrum extraction method[J]. Computer Simulation, 2015, 32(9): 5-9.
    [10]
    嵇斗, 单潮龙. 基于三稳随机共振的舰船轴频电场弱信号检测研究[J]. 海军工程大学学报, 2018, 30(06): 12-16.

    JI D, SHAN C L. Weak signal detection in ship′s shaft-rate EM field based on stochastic resonance of tri-stable system[J]. Journal of Naval University of Engineering, 2018, 30(06): 12-16.
    [11]
    黄勇, 程锦房, 张伽伟, 等. 最小平均p范数算法在轴频电场检测中的应用[J]. 舰船科学技术, 2022, 44(13): 139-143.

    HUANG Y, CHENG J F, ZHANG J W, et al. Application of least mean p-norm in shaft-rate electric field detection[J]. Ship Science and Technology, 2022, 44(13): 139-143.
    [12]
    程锐, 陈聪, 张伽伟. 基于EEMD和改进功率谱熵的船舶轴频电场检测[J]. 华中科技大学学报: 自然科学版, 2017, 45(5): 11-16.

    CHENG R, CHEN C, ZHANG J W. Detection of ship shaft-rate electric field based on EEMD and modified power spectral entropy[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2017, 45(5): 11-16.
    [13]
    ARDEKANI Z M. Nonlinear techniques for source detection and localization in shallow ocean with non-Gaussian noise[D]. Singapore: Nanyang Technological University, 2013.
    [14]
    CHO S H, JUNG H K, LEE H, et al. Real-time underwater object detection based on DC resistivity method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11): 6833-6842. doi: 10.1109/TGRS.2016.2591619
    [15]
    WU Z, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in adaptive data analysis, 2009, 1(1): 1-41. doi: 10.1142/S1793536909000047
    [16]
    SUN J, LI Z, ZOU F, et al. Adaptive determining for optimal cluster number of K-Means clustering algorithm[C]//Proceedings of the 2012 International Conference on Information Technology and Software Engineering: Information Technology & Computing Intelligence. Heidelberg, Berlin: Springer, 2012: 551-560.
    [17]
    王彪, 李涵琼, 高世杰, 等. 一种变步长最小平均p范数自适应滤波算法[J]. 电子与信息学报, 2022, 44(2): 661-667.

    WANG B, LI H Q, GAO S J, et al. A variable step size least mean p-power adaptive filtering algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(2): 661-667.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article Views(20) PDF Downloads(56) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return