
| Citation: | HU Xinyu, WANG Cong, WEI Yingjie. Study on the water entry process of the vehicle under the restriction of the underwater ice hole[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0077 |
| [1] |
LIU Y, LU H, LI Y, et al. A review of treatment technologies for produced water in offshore oil and gas fields[J]. Science of the Total Environment, 2021, 775: 145485. doi: 10.1016/j.scitotenv.2021.145485
|
| [2] |
ACHEAMPONG T, KEMP A G. Health, safety and environmental (HSE) regulation and outcomes in the offshore oil and gas industry: Performance review of trends in the United Kingdom Continental Shelf[J]. Safety Science, 2022, 148: 105634. doi: 10.1016/j.ssci.2021.105634
|
| [3] |
KAPOOR A, FRASER G S, CARTER A. Marine conservation versus offshore oil and gas extraction: Reconciling an intensifying dilemma in Atlantic Canada[J]. The Extractive Industries and Society, 2021, 8: 100978. doi: 10.1016/j.exis.2021.100978
|
| [4] |
CRIVELLARI A, BONVICINI S, TUGNOLI A, et al. Key performance indicators for environmental contamination caused by offshore oil spills[J]. Process Safety and Environmental Protection, 2021, 153: 60-74. doi: 10.1016/j.psep.2021.06.048
|
| [5] |
ALAPPATTU D P, WANG Q. Correction of depth bias in upper-ocean temperature and salinity profiling measurements from airborne expendable probes[J]. Journal of Atmospheric and Cceanic Technology, 2015, 32: 247-255. doi: 10.1175/JTECH-D-14-00114.1
|
| [6] |
PALMER M D, BOYER T, COWLEY R, et al. An algorithm for classifying unknown expendable bathythermograph (XBT) instruments based on existing metadata[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35: 429-440. doi: 10.1175/JTECH-D-17-0129.1
|
| [7] |
TAN Z, RESEGHETTI F, ABRAHAM J, et al. Examining the influence of recording system on the pure temperature error in XBT data[J]. Journal of Atmospheric and Oceanic Technology, 2021, 38: 759-776. doi: 10.1175/JTECH-D-20-0136.1
|
| [8] |
MAKI T, HORIMOTO H, ISHIHARA T, et al. Autonomous tracking of sea turtles based on multibeam imaging sonar: toward robotic observation of marine life [J]. IFAC Papers On Line, 2019, 52-21: 86-90.
|
| [9] |
JUDY M. Determining feeding events and prey encounter rates in a southern elephant seal: A method using swim speed and stomach temperature[J]. Marine Mammal Science, 2008, 24: 207-217. doi: 10.1111/j.1748-7692.2007.00156.x
|
| [10] |
IWATA T, SAKAMOTO K Q, EDWARDS E W J, et al. The influence of preceding dive cycles on the foraging decisions of Antarctic fur seals[J]. Biology Letters, 2015, 11: 20150227. doi: 10.1098/rsbl.2015.0227
|
| [11] |
LIU G, TALALAY P, WANG R, et al. Design parameters of hot-water drilling systems[J]. Water, 2019, 11: 289. doi: 10.3390/w11020289
|
| [12] |
TALALAY P, LIU G, WANG R, et al. Shallow hot-water ice drill: Estimation of drilling parameters and testing[J]. Cold Regions Science and Technology, 2018, 155: 11-19. doi: 10.1016/j.coldregions.2018.07.006
|
| [13] |
HONG J, FAN X, LIU Y, et al. Size distribution and shape characteristics of ice cuttings produced by an electromechanical auger drill[J]. Cold Regions Science and Technology, 2015, 119: 204-210. doi: 10.1016/j.coldregions.2015.08.012
|
| [14] |
王岳扬, 陈绍露, 龙镜冰, 等. 带泡沫头帽圆柱体入水机理试验研究[J]. 振动与冲击, 2024, 43(20): 263-274.
WANG Y Y, CHEN S L, LONG J B, et al. An experimental study on the water entry mechanism of a cylinder with foam cap[J]. Journal of Vibration and Shock, 2024, 43(20): 263-274.
|
| [15] |
彭睿哲, 冯和英, 向敏, 等. 头部喷气式超空泡航行体垂直入水性能研究[J]. 振动与冲击, 2024, 43(20): 238-246.
PENG R Z, FENG H Y, XIANG M, et al. A study on the vertical water entry performance of a head jet supercavitating navigation body[J]. Journal of Vibration and Shock, 2024, 43(20): 238-246.
|
| [16] |
刘喜燕, 袁绪龙, 罗凯, 等. 预置舵角对跨介质航行体入水尾拍运动影响试验[J]. 兵工学报, 2023, 44(06): 1632-1642.
LIU X Y, YUAN X L, LUO K, et al. Experimental investigation of the influence of preset rudder angle on tail-slapping of a trans-media vehicle during water entry[J]. Acta Armament arii, 2023, 44(06): 1632-1642.
|
| [17] |
黄振贵, 范浩伟, 那晓冬, 等. 空心弹高速斜入水弹道稳定性研究[J]. 力学学报, 2024, 56(9): 2579-2595.
HUABF Z G, FAN H W, NA X D, et al. Study on the ballistic stability of hollow projectial during high-speed oblique water entry[J]. Journal of Mechanics, 2024, 56(9): 2579-2595.
|
| [18] |
魏海鹏, 韩阔屹, 赵雷洋, 等. 基于密度分层的泡沫头帽降载机理及入水运动特性研究[J]. 力学学报, 2025, 57(4): 916-928.
WEI H P, HAN K Y, ZHAO L Y, et al. Research on load reduction mechanism and water entry movement characteristics of foam head cap based on density delamination[J]. Journal of Mechanics, 2025, 57(4): 916-928.
|
| [19] |
刘想炎, 于楠, 黄振贵, 等. 不同入水攻角下高速射弹的流固耦合特性[J]. 兵工学报, 2024, 45(10): 3415-3429.
LIU X Y, YU N, HUANG Z G, et al. Characteristics of fluid-structure interaction of high-speed projectile at different angles of attack during water entry[J]. Armament Arii, 2024, 45(10): 3415-3429.
|
| [20] |
刘陈, 吕续舰, 李胜男, 等. 串列双圆柱倾斜入水试验研究[J]. 弹道学报, 2024, 36(2): 90-97.
LIU C, LV X J, LI S N, et al. Experimental study on oblique water entry of two tandem cylinders[J]. Journal of Ballistics, 2024, 36(2): 90-97.
|
| [21] |
甄梓坤, 邹志辉, 蒋运华. 气射流协助圆盘头部航行体入水空泡特性实验研究[J]. 水下无人系统学报, 2024, 32(3): 489-495.
ZHEN Z K, ZOU Z H, JIANG Y H. Experimental investigation on cavity characteristics during water entry of disc-headed vehicle assisted by gas jet flow[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 489-495.
|
| [22] |
ZHANG Y F, MA S, SHAO W B, et al. Numerical investigation on the water entry of curved wedge-shaped sections into waves[J]. Ocean Engineering, 2023, 275: 114155. doi: 10.1016/j.oceaneng.2023.114155
|
| [23] |
ZHOU B J, ZHAO Z J, DAI Q, et al. Numerical study on the cavity dynamics of water entry and exit for a high-speed projectile crossing a wave[J]. Physics of Fluids, 2024, 36: 063321. doi: 10.1063/5.0212804
|
| [24] |
HUANG Q G, WANG C, SHI Y, et al. Study of the cavity and hydrodynamic characteristics of water entry for projectiles with different wave parameters[J]. Ocean Engineering, 2024, 313: 119441. doi: 10.1016/j.oceaneng.2024.119441
|
| [25] |
WANG C, HUANG Q G, LU L, et al. Numerical investigation of water entry characteristics of a projectile in the wave environment[J]. Ocean Engineering, 2024, 294: 116821 doi: 10.1016/j.oceaneng.2024.116821
|
| [26] |
LI Z P, SUN L Q, YAO X L, et al. Experimental study on cavity dynamics in high Froude number water entry for different nosed projectiles [J]. Applied Ocean Research. 2020, 102: 102305.
|