• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
WANG Chu, WANG Lei, HU Zhen, HU Baoqiang. Underactuated AUV backstepping sliding mode horizontal trajectory tracking control based on RBF neural network[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0076
Citation: WANG Chu, WANG Lei, HU Zhen, HU Baoqiang. Underactuated AUV backstepping sliding mode horizontal trajectory tracking control based on RBF neural network[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0076

Underactuated AUV backstepping sliding mode horizontal trajectory tracking control based on RBF neural network

doi: 10.11993/j.issn.2096-3920.2025-0076
  • Received Date: 2025-06-04
  • Accepted Date: 2025-07-22
  • Rev Recd Date: 2025-07-05
  • Available Online: 2025-11-24
  • A backstepping integral sliding mode trajectory tracking control method for underactuated autonomous underwater vehicles (AUV) based on radial basis function (RBF) neural network was proposed to address the challenges of difficult horizontal trajectory tracking control and weak anti-interference ability in complex marine environments. Firstly, a kinematic controller was designed by employing the backstepping control method to obtain virtual control laws and actual control inputs. In the dynamic controller, integral sliding mode control was introduced to account for the uncertainty factors and possible external disturbances of the system. Meanwhile, an RBF neural network was adopted to approximate the unknown nonlinear terms of the system online, effectively resolving the contradiction between the chattering effect and parameter uncertainty in traditional sliding mode control. By taking the error as the input of the RBF neural network and using the output of the RBF neural network as the switching control, the online adjustment of the sliding mode control law was achieved. The simulation results show that, compared with the traditional backstepping sliding mode control, the proposed method can effectively eliminate the "chattering" problem caused by the switching terms in traditional sliding mode control, enabling the system to exhibit fast dynamic response and strong robustness.

     

  • loading
  • [1]
    王芳, 万磊, 李晔, 等. 欠驱动AUV的运动控制技术综述[J]. 中国造船, 2010, 51(2): 227-241.

    WANG F, WAN L, LI , et al. Y, et al. A survey on development of motion control for underactuated AUV[J]. Shipbuilding of China, 2010, 51(2): 227-241.
    [2]
    吴宝举, 李硕, 王晓辉. 自治水下机器人自适应滑膜控制[J]. 机械设计与制造, 2010, 7: 142-144.

    WU B J, LI S, WANG X H. Adaptive sliding mode control of an autonomous underwater vehicle[J]. Machinery Design & Manufacture, 2010, 7: 142-144.
    [3]
    李亚龙, 王俊雄. 考虑未知时变流速的AUV改进动态面自适应跟踪控制[J]. 装备环境工程, 2025, 22(1): 144-151.

    LI Y L, WANG J X. Improved dynamic surface adaptive tracking control of AUV considering unknown time-varying velocity[J]. Equipment Environmental Engineering, 2025, 22(1): 144-151.
    [4]
    刘杰. 基于反步滑模的AUV轨迹跟踪控制方法研究[D]. 天津: 河北工业大学, 2022.
    [5]
    于曹阳, 向先波, 张嘉磊, 等. 基于反步法的欠驱动AUV鲁棒定深控制[J]. 华中科技大学学报(自然科学版), 2017, 45(10): 117-121.

    YU C Y, XIANG X B, ZHANG J L, et al. Robust depth control of under-actuated underwater vehicles based on backstepping[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2017, 45(10): 117-121.
    [6]
    XIE W, SI C L, MA H, et al. An active disturbance rejection control for underactuated AUV[C]//2023 38th Youth Academic Annual Conference of Chinese Association of Automation(YAC). Hefei, China: YAC, 2023: 123-127.
    [7]
    徐燕铭, 徐营杰, 宋泽, 等. 基于模糊控制的AUV运动控制研究[J]. 天津航海, 2023, 2: 75-78.

    XU Y Y, XU Y J, SONG Z, et al. The motion control research on the underwater robot based on fuzzy control[J]. Tianjin Hanghai, 2023, 2: 75-78.
    [8]
    李宏宇, 王莹, 陆震, 等. 基于PSO-GA算法和神经网络的AUV姿态协调控制[J/OL]. 中国测试, 1-7[2025-04-16]. https://www.cnki.com.cn/Article/CJFDTotal-SYCS20220321018.htm.

    Coordinated attitude control of underwater vehicle based on PSO-GA algorithm and neural network[J/OL]. Zhongguo Ceshi, 1-7 [2025-04-16]. https://www.cnki.com.cn/Article/CJFDTotal-SYCS20220321018.htm
    [9]
    张荣浩. 基于模型预测控制的AUV运动控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2024.
    [10]
    李山山. 基于改进分数阶滑模的欠驱动AUV轨迹跟踪控制[D]. 哈尔滨: 哈尔滨工程大学, 2024.
    [11]
    许辰宇, 靳华伟, 闫方正. 基于动态面的AUV水平面轨迹跟踪滑模控制[J]. 菏泽学院学报, 2023, 45(5): 50-58.

    XU Y C, JIN H W, YAN F Z. Sliding Mode Control for Horizontal Trajectory Tracking of AUV Based on Dynamic Surface[J]. Journal of Heze University, 2023, 45(5): 50-58.
    [12]
    李相衡, 闫昭琨, 楼建坤, 等. 海流扰动下ROV自适应神经网络控制[J]. 水下无人系统学报, 2025, 33(1): 37-45.

    LI X H, YAN Z K, LOU J K, et al. Adaptive neural network control of ROVs under ocean current disturbance[J]. Journal of Unmanned Undersea Systems, 2025, 33(1): 37-45.
    [13]
    闫方正, 靳华伟. 输入饱和下的AUV水平面轨迹跟踪滑模控制[J]. 黑龙江工业学院学报(综合版), 2023, 23(7): 91-98.

    YAN F Z, JIN H W. Sliding Mode Control of Horizontal Trajectory Tracking of AUV Under Input Saturation[J]. Journal of Heilongjiang University of Technology(Comprehensive Edition), 2023, 23(7): 91-98.
    [14]
    YAN Z P, YU H M, ZHANG W, et al. Globally finite-time stable tracking control of underactuated UUVs[J]. Ocean Engineering, 2015, 107: 132-146. doi: 10.1016/j.oceaneng.2015.07.039
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article Views(14) PDF Downloads(3) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return