Citation: | WANG Biao, LUO Ruilong, WANG Fang, CUI Weicheng. Research Status and Development Trends of Deep-sea Unmanned Equipment Control System[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 390-399. doi: 10.11993/j.issn.2096-3920.2025-0074 |
[1] |
梁波, 赵宏宇, 王楠. 水下机器人在中国的早期发展[J]. 科学, 2022(3): 53-56.
|
[2] |
NAKAMURA M, KOTERAYAMA W, YAMAMOTO I, et al. Control of heading angle of launcher of deep sea exploration unmanned underwater vehicle “KAIKO”[C]//Proceedings of The Sixteenth 2006 International Offshore and Polar Engineering Conference. San Francisco, CA, USA: ISOPE, 2006: 213-220.
|
[3] |
FENUCCI D, FANELLI F, CONSENSI A, et al. A multi-platform guidance, navigation and control system for the autosub family of autonomous underwater vehicles[J]. Control Engineering Practice, 2024, 146: 105902. doi: 10.1016/j.conengprac.2024.105902
|
[4] |
ALLEN B, STOKEY R, AUSTIN T, et al. REMUS: A small, low cost AUV; system description, field trials and performance results[C]//Oceans' 97. MTS/IEEE Conference Proceedings. Halifax, NS, Canada: IEEE, 1997: 994-1000.
|
[5] |
WHITCOMB L L, JAKUBA M V, KINSEY J C, et al. Navigation and control of the Nereus hybrid underwater vehicle for global ocean science to 10903 m depth: Preliminary results[C]//2010 IEEE International Conference on Robotics and Automation. Anchorage, Alaska, USA: IEEE, 2010: 594-600.
|
[6] |
任峰, 张莹, 张丽婷, 等. “海龙Ⅲ”号ROV系统深海试验与应用研究[J]. 海洋技术学报, 2019, 38(2): 30-35.
REN F, ZHANG Y, ZHANG L T, et al. Research on the deep-sea test and application of the "Hailong Ⅲ" ROV system[J]. Journal of Ocean Technology, 2019, 38(2): 30-35.
|
[7] |
梁一飞, 李永龙, 王皓冉, 等. 基于降阶扩张状态观测器的水下机器人自抗扰运动控制[J]. 传感器与微系统, 2024, 43(8): 141-145.
LIANG Y F, LI Y L, WANG H R, et al. Active disturbance rejection motion control of ROV based on reduced order extended state observer[J]. Transducer and Microsystem Technologies, 2024, 43(8): 141-145.
|
[8] |
黄陶俊, 石凯, 乌云嘎, 等. 基于自抗扰控制的AUV抗洋流对接研究[J]. 舰船科学技术, 2024, 46(14): 89-96.
HUANG T J, SHI K, WU Y G, et al. Research on AUV docking of anti ocean current based on active disturbance rejection control[J]. Ship Science and Technology, 2024, 46(14): 89-96.
|
[9] |
JING A, WANG J, GAO J, et al. Self-tuning adaptive active disturbance rejection pitch control of a manta-ray-like underwater glider[J]. Ocean Engineering, 2022, 254: 111364. doi: 10.1016/j.oceaneng.2022.111364
|
[10] |
王翻, 武建国, 王晓鸣, 等. 改进型自抗扰在ROV位姿控制中的应用[J]. 舰船科学技术, 2024, 46(14): 91-98.
WANG F, WU J G, WANG X M, et al. Application of improved active disturbance rejection in ROV pose control[J]. Ship Science and Technology, 2024, 46(14): 91-98.
|
[11] |
褚悦, 石泽林, 王孟军, 等. 水下航行器有限时间滑模控制[J]. 水下无人系统学报, 2023, 31(6): 878-884. doi: 10.11993/j.issn.2096-3920.2022-0060
CHU Y, SHI Z L, WANG M J, et al. Finite-time sliding mode control for undersea vehicles[J]. Journal of Unmanned Undersea Systems, 2023, 31(6): 878-884. doi: 10.11993/j.issn.2096-3920.2022-0060
|
[12] |
JOE H, KIM M, YU S C. Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances[J]. Nonlinear Dynamics, 2014, 78(1): 183-196. doi: 10.1007/s11071-014-1431-0
|
[13] |
TAHERI E, FERDOWSI M H, DANESH M. Design boundary layer thickness and switching gain in SMC algorithm for AUV motion control[J]. Robotica, 2019(10): 1-19.
|
[14] |
孙旭瑶. 基于高阶滑模控制的水下机器人轨迹跟踪算法研究[D]. 秦皇岛: 燕山大学, 2023.
|
[15] |
DENG S Y, HAO L Y, SHEN C. Autonomous underwater vehicle(AUV) motion design: Integrated path planning and trajectory tracking based on model predictive control(MPC)[J]. Journal of Marine Science & Engineering, 2024, 12(9): 1655.
|
[16] |
XIN G, ZHOU M, YANG B, et al. Energy optimization control algorithm of underwater vehicle based on model predictive control[J]. Journal of Coastal Research, 2020, 103(SI): 830-834.
|
[17] |
LIU Z, ZHU D, LIU C, et al. A novel path planning algorithm of AUV with model predictive control[J]. International Journal of Robotics and Automation, 2022, 37(6): 460-467.
|
[18] |
ZHANG W, WANG Q, WU W, et al. Event-trigger NMPC for 3-D trajectory tracking of UUV with external disturbances[J]. Ocean Engineering, 2023, 283: 115050. doi: 10.1016/j.oceaneng.2023.115050
|
[19] |
BIAN Y, ZHANG J, HU M, et al. Self-triggered distributed model predictive control for cooperative diving of multi-AUV system[J]. Ocean Engineering, 2023, 267: 113262. doi: 10.1016/j.oceaneng.2022.113262
|
[20] |
TABATABA’I-NASAB F S, KEYMASI KHALAJI A, MOOSAVIAN S A A. Adaptive nonlinear control of an autonomous underwater vehicle[J]. Transactions of the Institute of Measurement and Control, 2019, 41(11): 3121-3131. doi: 10.1177/0142331218823869
|
[21] |
ZHENG X, TIAN Q, ZHANG Q. Development and control of an innovative underwater vehicle manipulator system[J]. Journal of Marine Science and Engineering, 2023, 11(3): 548. doi: 10.3390/jmse11030548
|
[22] |
LI J, WANG Y, LI H, et al. Sliding mode control with adaptive-reaching-law-based fault-tolerant control for AUV sensors and thrusters[J]. Journal of Marine Science and Engineering, 2023, 11(11): 2170. doi: 10.3390/jmse11112170
|
[23] |
LU D, XIONG C, ZENG Z, et al. Adaptive dynamic surface control for a hybrid aerial underwater vehicle with parametric dynamics and uncertainties[J]. IEEE Journal of Oceanic Engineering, 2019, 45(3): 740-758.
|
[24] |
熊保星, 甘文洋, 陈铭治, 等. 基于模糊线性自抗扰的水下机器人定深控制[J]. 控制工程, 2024: 1-9.
XIONG B X, GAN W Y, CHEN M Z, et al. Depth control of underwater vehicle based on fuzzy linear active disturbance rejection[J]. Control Engineering, 2024: 1-9.
|
[25] |
JI D, ZHOU S, REN J, et al. A prototype of newly dynamic underwater vehicle using fuzzy PID control[C]//2019 IEEE 28th International Symposium on Industrial Electronics(ISIE). Vancouver, BC, Canada: IEEE, 2019: 1121-1126.
|
[26] |
CHENG C, SHA Q, HE B, et al. Path planning and obstacle avoidance for AUV: A review[J]. Ocean Engineering, 2021, 235: 109355. doi: 10.1016/j.oceaneng.2021.109355
|
[27] |
LONDHE P S, SANTHAKUMAR M, PATRE B M, et al. Task space control of an autonomous underwater vehicle manipulator system by robust single-input fuzzy logic control scheme[J]. IEEE Journal of oceanic engineering, 2016, 42(1): 13-28.
|
[28] |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. doi: 10.1126/science.1127647
|
[29] |
郑雨帆, 王银涛, 孙琦. 基于轻量化深度网络的水下声呐目标识别方法[J]. 指挥控制与仿真, 2025: 1-10.
ZHENG Y F, WANG Y T, SUN Q. Underwater sonar target recognition method based on lightweight deep network [J]. Command Control & Simulation, 2025: 1-10.
|
[30] |
李培坤, 李锋, 葛忠显, 等. 基于改进YOLOv8n的水下目标检测算法[J]. 电子测量技术, 2025, 48(3): 172-179.
LI P K, LI F, GE Z X, et al. Underwater target detection algorithm based on improved YOLOv8n[J]. Electronic Measurement Technology, 2025, 48(3): 172-179.
|
[31] |
WANG N, CHEN T, LIU S, et al. Deep learning-based visual detection of marine organisms: A survey[J]. Neurocomputing, 2023, 532: 1-32. doi: 10.1016/j.neucom.2023.02.018
|
[32] |
张天驰, 刘宇轩. 深度学习驱动的水下图像处理研究进展[J]. 计算机科学, 2024, 51(z1): 271-282. doi: 10.11896/jsjkx.230400107
ZHANG T C, LIU Y X. Research progress of underwater image processing based on deep learning[J]. Computer Science, 2024, 51(z1): 271-282. doi: 10.11896/jsjkx.230400107
|
[33] |
ANWAR S, LI C. Diving deeper into underwater image enhancement: A survey[J]. Signal Processing: Image Communication, 2020, 89: 115978. doi: 10.1016/j.image.2020.115978
|
[34] |
XIA S, ZHOU X, SHI H, et al. A fault diagnosis method based on attention mechanism with application in Qianlong-2 autonomous underwater vehicle[J]. Ocean Engineering, 2021, 233: 109049. doi: 10.1016/j.oceaneng.2021.109049
|
[35] |
潘云伟, 李敏, 曾祥光, 等. 基于人工势场和改进强化学习的自主式水下潜航器避障和航迹规划[J]. 兵工学报, 2025, 46(4): 72-83.
PAN Y W, LI M, ZENG X G, et al. AUV obstacle avoidance and path planning based on artificial potential field and improved reinforcement learning[J]. Acta Armamentarii, 2025, 46(4): 72-83.
|
[36] |
孙玉山, 冉祥瑞, 张国成, 等. 智能水下机器人路径规划研究现状与展望[J]. 哈尔滨工程大学学报, 2020, 41(8): 1111-1116. doi: 10.11990/jheu.201906048
SUN Y S, RAN X R, ZHANG G C, et al. Research status and prospect of path planning for autonomous underwater vehicles[J]. Journal of Harbin Engineering University, 2020, 41(8): 1111-1116. doi: 10.11990/jheu.201906048
|
[37] |
WANG Y, GAO J. Reinforcement-learning-based visual servoing of underwater vehicle dual-manipulator system[J]. Journal of Marine Science and Engineering, 2024, 12(6): 940. doi: 10.3390/jmse12060940
|
[38] |
闫敬, 徐龙, 曹文强, 等. 基于深度强化学习的多潜器编队控制算法设计[J]. 控制与决策, 2023, 38(5): 1457-1463.
|
[39] |
SONG D, GAN W, YAO P, et al. Guidance and control of autonomous surface underwater vehicles for target tracking in ocean environment by deep reinforcement learning[J]. Ocean Engineering, 2022, 250: 110947. doi: 10.1016/j.oceaneng.2022.110947
|
[40] |
谢伟, 陶浩, 龚俊斌, 等. 海上无人系统集群发展现状及关键技术研究进展[J]. 中国舰船研究, 2021, 16(1): 7-17, 31.
|
[41] |
赵蕊, 许建, 向先波, 等. 多自主式水下机器人的路径规划和控制技术研究综述[J]. 中国舰船研究, 2018, 13(6): 58-65.
|
[42] |
HASAN M W, ABBAS N H. An adaptive neural network with nonlinear FOPID design of underwater robotic vehicle in the presence of disturbances, uncertainty, and obstacles[J]. Ocean Engineering, 2023, 279: 114451. doi: 10.1016/j.oceaneng.2023.114451
|
[43] |
JI D, ZHOU S, REN J, et al. A prototype of newly dynamic underwater vehicle using fuzzy PID control[C]//2019 IEEE 28th International Symposium on Industrial Electronics(ISIE). Vancouver, Canada: IEEE, 2019: 1121-1126.
|
[44] |
WANG Y, HOU Y, LAI Z, et al. An adaptive PID controller for path following of autonomous underwater vehicle based on Soft Actor-Critic[J]. Ocean Engineering, 2024, 307: 118171. doi: 10.1016/j.oceaneng.2024.118171
|
[45] |
VON BENZON M, SØRENSEN F F, UTH E, et al. An open-source benchmark simulator: Control of a bluerov2 underwater robot[J]. Journal of Marine Science and Engineering, 2022, 10(12): 1898. doi: 10.3390/jmse10121898
|
[46] |
VALAVANIS K P, GRACANIN D, MATIJASEVIC M, et al. Control architectures for autonomous underwater vehicles[J]. IEEE Control Systems Magazine, 1997, 17(6): 48-64. doi: 10.1109/37.642974
|
[47] |
PHILLIPS A B, TEMPLETON R, ROPER D, et al. Autosub long range 1500: A continuous 2000 km field trial[J]. Ocean Engineering, 2023, 280: 114626
|
[48] |
JAFFRE F, LITTLEFIELD R, GRUND M, et al. Development of a new version of the Remus 6000 autonomous underwater vehicle[C]//OCEANS 2019-Marseille. Marseille, France: IEEE, 2019: 1-7.
|
[49] |
GOLDBERG D. Huxley: A flexible robot control architecture for autonomous underwater vehicles[C]//OCEANS 2011 IEEE-Spain. Santander, Spain: IEEE, 2011: 1-10.
|
[50] |
WANG J, TANG Y, LI S, et al. The Haidou-1 hybrid underwater vehicle for the Mariana Trench science exploration to 10, 908 m depth[J]. Journal of Field Robotics, 2024, 41(4): 1054-1079. doi: 10.1002/rob.22307
|
[51] |
XU J, DU Z, HUANG X, et al. Design and development of 10, 000-meter class autonomous underwater vehicle[J]. Journal of Marine Science and Engineering, 2024, 12(11): 2097. doi: 10.3390/jmse12112097
|
[52] |
LIU H, WANG Y, LEWIS F L. Robust distributed formation controller design for a group of unmanned underwater vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(2): 1215-1223.
|
[53] |
赵万龙, 刘功亮, 张敏, 等, 水下多源融合定位与导航技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2023.
|
[54] |
邢奥成, 李海兵, 阚宝玺, 等. 海洋地磁导航关键技术及发展趋势[J]. 导航定位与授时, 2025, 12(2): 1-14.
XING A C, LI H B, KAN B X, et al. Review of key technologies and development trends in marine geomagnetic navigation[J]. Navigation Positioning and Timing, 2025, 12(2): 1-14.
|
[55] |
兰天, 李鼎, 娄琪欣, 等. 水下地形辅助导航算法综述[J]. 导航定位与授时, 2025, 12(1): 14-28.
|
[56] |
ZHANG S, ZHAO S, AN D, et al. Visual SLAM for underwater vehicles: A survey[J]. Computer Science Review, 2022, 46: 100510. doi: 10.1016/j.cosrev.2022.100510
|
[57] |
YANG H, XU Z, JIA B. An underwater positioning system for UUVs based on LiDAR camera and inertial measurement unit[J]. Sensors, 2022, 22(14): 5418. doi: 10.3390/s22145418
|
[58] |
杨健敏, 王佳惠, 乔钢, 等. 水声通信及网络技术综述[J]. 电子与信息学报, 2024, 46(1): 1-21. doi: 10.11999/JEIT230424
|
[59] |
FARR N, WARE J, PONTBRIAND C, et al. Optical communication system expands CORK seafloor observatory's bandwidth[C]//OCEANS 2010 MTS/IEEE SEATTLE. Seattle, Washington, USA: IEEE, 2010: 1-6.
|
[60] |
韩笑天. 水下长距离无线光通信若干关键技术研究 [D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2024.
|
[61] |
BOWEN A D, YOERGER D R, TAYLOR C, et al. The Nereus hybrid underwater robotic vehicle for global ocean science operations to 11, 000 m depth[C]//OCEANS 2008. Quebec City, QC, Canada: IEEE, 2008.
|
[62] |
李围, 杨创, 赵胜. 基于CAN总线的全海深锂离子电池组监测系统设计[J]. 船电技术, 2022, 42(10): 80-83. doi: 10.3969/j.issn.1003-4862.2022.10.020
|
[63] |
苑志祥, 张浩, 张雪, 等. 深潜器用蓄电池的研究进展[J]. 硅酸盐学报, 2023, 51(11): 2868-2875.
|
[64] |
KWON L, KANG J G, BAIK K D, et al. Advancement and applications of PEMFC energy systems for large-class unmanned underwater vehicles: A review[J]. International Journal of Hydrogen Energy, 2024, 79: 277-294. doi: 10.1016/j.ijhydene.2024.07.016
|