• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
Tian Yiwei, LV Rui, Wang Menghao, Li Kui, Zhang Kai, Wang Leilei. Numerical Simulation Study on the Release Process of Underwater Towed Bodies under Different Parameters[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0072
Citation: Tian Yiwei, LV Rui, Wang Menghao, Li Kui, Zhang Kai, Wang Leilei. Numerical Simulation Study on the Release Process of Underwater Towed Bodies under Different Parameters[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0072

Numerical Simulation Study on the Release Process of Underwater Towed Bodies under Different Parameters

doi: 10.11993/j.issn.2096-3920.2025-0072
  • Received Date: 2025-05-26
  • Accepted Date: 2025-06-24
  • Rev Recd Date: 2025-06-16
  • Available Online: 2025-11-24
  • The underwater towing body is an important component of underwater vehicles. For the requirements such as the design of the towing cable for underwater towing bodies and stable attitude during the release process, this paper constructed the fluid dynamics model of the towed body by the overlapping mesh technology and the achievable $k - \varepsilon $ turbulence model, after when carrying out the unsteady numerical simulation of the release process of the towing body. After the simulation, the paper verified the effectiveness of the grid division and numerical methods by comparing the simulation results with the experimental results. The paper systematically analyzed the influence of towing speed, the position of the barycenter and the buoyant center and the towing point on the release process of the towing body in underwater system. The towing speed affects the stabilization time and attitude stabilization process of the towing body, and the optimal towing speed needed to be determined according to the structure of the towing body. The positions of the barycenter and the buoyant center had a significant effect on the release dynamic characteristics of the towed body, and the design of moving the barycenter forward could reduce the oscillation of the towing body and improve the stability of the system. When the barycenter was close to the buoyant center, the attitude adjustment time of the towed body was shorter and the movement was more stable. The towing point should be selected under the head of the towing body to reduce the change in pitch angle during the release process and improve the stability of the release process. The results of the paper provided an important theoretical basis for the engineering design and release strategy of underwater towing bodies.

     

  • loading
  • [1]
    张巍. 对潜通信技术的发展动向与分析[J]. 舰船电子工程, 2016, 36(6): 13-16,41.

    ZHANG W. Development trend and analysis of submarine communication technology[J]. Ship Electronic Engineering, 2016, 36(6): 13-16,41.
    [2]
    杨坤, 杜度. 国外对潜通信技术发展研究[J]. 舰船科学技术, 2018, 40(2): 153-157.

    YANG K, DU D. Research on the development of foreign submarine communication technology[J]. Ship Science and Technology, 2018, 40(2): 153-157.
    [3]
    王帅, 孟旭东, 陈小星. 拖体水动力特性的流体力学分析[J]. 机电工程技术, 2024, 53(1): 163-170.

    WANG S, MENG X D, CHEN X X. Hydromechanical analysis of towed body on hydrodynamic characteristics[J]. Mechanical & Electrical Engineering Technology, 2024, 53(1): 163-170.
    [4]
    ABKOWITZ M A. Stability and motion of ocean vehicles[M]. Cambridge: MIT Press, 1969, 32-50.
    [5]
    LANDSTAD O, HALVORSEN H S, ØVERAAS H, et al. Dynamic positioning of ROV in the wave zone during launch and recovery from a small surface vessel[J]. Ocean Engineering, 2021, 235: 109382.
    [6]
    吴方良, 吴晓光, 许建. 潜艇主艇体三维粘性流场数值计算方法研究[J]. 中国造船, 2009, 50(2): 12-22.

    WU F L, WU X G, XU J. Method of numerical calculation of the 3D viscous flow field over a submarine main hull[J]. Shipbuilding Of China, 2009, 50(2): 12-22.
    [7]
    杨壮滔, 张镇, 何文生, 等. 水下无人平台动态布放UUV过程水动力特性[J]. 水下无人系统学报, 2022, 30(1): 115-121.

    YANG Z T, ZHANG Z, HE W S. Hydrodynamic characteristics of UUV during dynamic deployment process of underwater unmanned platform[J]. Journal of Unmanned Undersea Systems, 2022, 30(1): 115-121.
    [8]
    张海亭. 面向USV自主回收AUV的拖曳装置研究[M]. 沈阳: 东北大学, 2018.
    [9]
    高东勇. 基于无人艇AUV布放回收装置设计及拖曳动力学研究[M]. 沈阳: 沈阳工业大学, 2022
    [10]
    LIU J, GAO S, NIAN R, et al. Study on hydrodynamic characteristics and depth control of the towed sensors array system[J]. Marine Structures, 2023, 92: 103504. doi: 10.1016/j.marstruc.2023.103504
    [11]
    马文宾, 向祖权, 茅云生. 船舶拖曳潜体回转和收放作业仿真[J]. 中国舰船研究, 2015, 10(5): 34-40.

    MA W B, XIANG Z Q, MAO Y S. Simulation of the towed body under turning and retraction[J]. Chinese Journal of Ship Research, 2015, 10(5): 34-40.
    [12]
    马峥, 黄少锋, 朱德祥. 湍流模型在船舶计算流体力学中的适用性研究[J]. 水动力学研究与进展, 2009, 24(2): 207-216.

    MA Z, HUANG S F, ZHU D X. Study on applicability of turbulence model in ship computational fluid dynamics[J]. Chinese Journal of Hydrodynamics, 2009, 24(2): 207-216.
    [13]
    谢楠, 郜焕秋. 浮标-缆-物体综合系统动力学二维时域分析[J]. 水动力学研究与进展, 2000, 15(2): 202-213.

    XIE N, GAO H Q. Two-dimensional time domain dynamic analysis for the general buoy-cable-body system[J]. Journal of Hydrodynamics, 2000, 15(2): 202-213.
    [14]
    SHIH T, LIOU W W, SHABBIR A, et al. A new K-epsilon eddy viscosity model for high Reynolds number turbulent flows: Model Development and Validation[J]. Nasa Sti/recon Technical Report N, 1994, 95(5): 1-34.
    [15]
    SHIH T H, LIOU W W, SHABBIR A, et al. A new k-epsilon eddy viscosity model for high: Reynolds number turbulent flows[J]. Computers Fluids, 1995, 24(3): 227-238.
    [16]
    孙辰, 陈志平, 宁春林, 等. 海洋资料浮标结构关键问题研究[J]. 杭州电子科技大学学报, 2013, 33(6): 146-149.

    SUN C, CHEN Z P, NING C L, et al. Research on key problems of ocean data buoy[J]. Journal of Hangzhou Dianzi University, 2013, 33(6): 146-149.
    [17]
    WALTON T S, POLACHEK H. Calculation of transient motion of submerged cables[J]. Mathematics of Computation, 1960, 14(69): 27-46.
    [18]
    杜晓旭, 张小链. 拖缆对水下航行器的操纵性能影响[J]. 兵工学报, 2019, 40(7): 1476-1484.

    DU X X, ZHANG X L. Influence of towed cable on maneuverability of underwater vehicle[J]. Acta armamentarii, 2019, 40(7): 1476-1484.
    [19]
    苑志江, 金良安, 田恒斗, 等. 海洋拖曳系统的水动力理论与控制技术研究综述[J]. 科学技术与工程, 2013, 13(2): 408-415,420.

    YUAN Z J, JIN L A, TIAN H D, LU Y B, et al. Comments on the research of hydrodynamic and control technology of underwater towed system[J]. Science Technology and Engineering, 2013, 13(2): 408-415,420.
    [20]
    褚悦, 刘平安, 黄曦, 等. 不同航行条件下超空泡航行器出水过程数值计算[J]. 水下无人系统学报, 2024, 32(3): 496-506.

    CHU Y, LIU P A, HUANG X, et al. Numerical calculation of water exit process of supercavitating vehicles under different sailing conditions[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 496-506.
    [21]
    杜小振, 郭东兴, 王文秀, 等. 基于重叠网格技术柔性旗帜与流体耦合运动数值模拟[J]. 科学技术与工程, 2025, 25(2): 473-483.

    DU X Z, GUO D X, WANG W X, et al. Numerical simulation of flexible flag-fluid coupled motion based on overlapping grid technique[J]. Science Technology and Engineering, 2025, 25(2): 473-483.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article Views(12) PDF Downloads(1) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return