
| Citation: | WANG Zhaochen, YANG Huadong, SUN Haiwen, JIN Zirong. Research Status and Development of Intelligent Optimization Methods for Mission Schemes[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0066 |
| [1] |
焦鹏博, 罗志浩, 范长俊, 等. 作战方案智能推荐方法综述[J/OL]. 系统工程与电子技术, 1-17[2025-11-12]. https://link.cnki.net/urlid/11.2422.TN.20241010.0913.002
JIAO P B, LUO Z H, FAN C J, et al. Review on intelligent recommendation methods for combat plans[J]. Systems Engineering and Electronics: 1-17[2025-11-12]. https://link.cnki.net/urlid/11.2422.TN.20241010.0913.002
|
| [2] |
陈东林, 赵利佳, 赵岳, 等. 基于深度神经网络的作战方案辅助生成研究[C]//第十届中国指挥控制大会论文集(上册). 北京, 中国: 中国指挥与控制学会, 2022: 249-253.
|
| [3] |
GIN C R, SHEA D E, BRUNTON S L, et al. DeepGreen: Deep learning of Green’s functions for non-linear boundary value problems[J]. Scientific Reports, 2021, 11(1): 21614. doi: 10.1038/s41598-021-00773-x
|
| [4] |
李皓, 常国岑, 孙鹏, 等. 基于Agent的作战方案自动生成系统研究[J]. 系统工程与电子技术, 2009, 31(1): 134-136.
LI H, CHANG G C, SUN P, et al. Research on agent-based automatic generation system for combat plans[J]. Systems Engineering and Electronics, 2009, 31(1): 134-136.
|
| [5] |
徐任杰, 宫琳, 朱明仁, 等. 不确定信息下考虑相关性与多样性的作战方案推荐方法[J]. 系统工程与电子技术, 2022, 44(10): 3115-3123.
XU R J, GONG L, ZHU M R, et al. A method for recommending combat plans considering correlation and diversity under uncertain information[J]. Systems Engineering and Electronics, 2022, 44(10): 3115-3123.
|
| [6] |
ZHAO Y, DU K. A matching scheme from supply and demand sides of electronic health records based on blockchain[C]//2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP). Xi’an, China: IEEE, 2022: 1089-1092.
|
| [7] |
QU Z T, HE P. Interactive intelligent analysis method: An application of criminal investigation[C]//2009 International Symposium on Intelligent Ubiquitous Computing and Education. Chengdu, China: IEEE, 2009: 152-155.
|
| [8] |
谢炜, 黄建业, 程斌, 等. 基于大语言模型的知识图谱复杂逻辑推理方法[C]//第39次全国计算机安全学术交流会论文集. 西安, 中国: 中国计算机学会, 2024: 175-180.
|
| [9] |
HARB H, NADER D, SABEH K, et al. Real-time approach for decision making in IoT-based applications[C]//International Conference on Sensor Networks. On Line: HAL, 2022: 223-230.
|
| [10] |
徐涛. 基于知识图谱的数据关联融合技术研究[J]. 软件, 2024, 45(10): 96-98.
XU T. Research on data association and fusion technology based on knowledge graph[J]. Software, 2024, 45(10): 96-98.
|
| [11] |
邱天搏, 张东, 李冠宇, 等. MSIM: 融合注意力机制的多阶段推理知识图谱问答模型[J]. 计算机工程与应用, 2024: 1-12.
Qiu Tianbo, Zhang Dong, Li Guanyu, et al. MSMI: A multi-stage reasoning knowledge graph question an-swering model with attention mechanism[J]. Computer Engineering and Applications, 2024: 1-12.
|
| [12] |
刘将. 基于深度学习的知识图谱关系推理算法优化及系统实现[D]. 北京: 北京邮电大学, 2023
|
| [13] |
GENG D Q, DENG J. Knowledge graph embedding model based on multi-hop adaptive graph attention net-work[C]// 2024 36th Chinese Control and Decision Conference (CCDC). Xi’an, China: IEEE, 2024: 3086-3091.
|
| [14] |
殷泽恒, 余敦辉, 邓怡辰, 等. 融合逻辑规则和推理路径嵌入的知识图谱推理[J]. 微电子学与计算机, 2025, 42(9): 134-144. doi: 10.19304/J.ISSN1000-7180.2024.0640
YIN Z H, YU D H, DENG Y C, et al. Knowledge graph reasoning based on the integration of logical rules and embedding of inference paths[J]. Microelectronics and Computer, 2025, 42(9): 134-144. doi: 10.19304/J.ISSN1000-7180.2024.0640
|
| [15] |
吴冰涛. 基于扩展置信规则库的规则推理网络模型[D]. 石家庄: 石家庄铁道大学, 2024
|
| [16] |
宋晨烨, 贺筱媛, 郭圣明, 等. 基于时序知识图谱的智能任务推断方法[J]. 系统仿真技术, 2024, 20(3): 275-281,306.
SONG C Y, HE X Y, GUO S M, et al. Intelligent task inference method based on temporal knowledge graph[J]. System Simulation Technology, 2024, 20(3): 275-281,306.
|
| [17] |
胡诗, 毛杰. 海上编队协同作战规则推理技术研究[J]. 舰船电子工程, 2017, 37(5): 109-113.
HU S, MAO J. Research on reasoning technology for rules of sea battle group’s cooperative operations[J]. Ship Electronic Engineering, 2017, 37(5): 109-113.
|
| [18] |
SAID A M, MAROT M, BOUCETTA C, et al. Reinforcement learning vs rule-based dynamic movement strategies in UAV assisted networks[R]. Vehicular Communications, 2024, 48: 100788.
|
| [19] |
胡诗. 作战方案全要素仿真推演技术研究[J]. 舰船电子工程, 2019, 39(12): 11-17.
HU S. Research on full-element simulation and drift evaluation technology for combat plans[J]. Ship Electronic Engineering, 2019, 39(12): 11-17.
|
| [20] |
YANG Z L, BONSALL S, WANG J. Fuzzy rule-based bayesian reasoning approach for prioritization of failures in FMEA[J]. IEEE Transactions on Reliability, 2008, 57(3): 517-528. doi: 10.1109/TR.2008.928208
|
| [21] |
Research and Solution Analysis on Key Technologies of Intelligent Distribution Network and New Energy Grid Connection[J]. Chongqing VIP Information Co. , Ltd. , 2022.
|
| [22] |
周攀, 黄江涛, 章胜, 等. 基于深度强化学习的智能空战决策与仿真[J]. 航空学报, 2023, 44(4): 99-112.
ZHOU P, HUANG J T, ZHANG S, et al. Intelligent air combat decision-making and simulation based on deep reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 99-112.
|
| [23] |
邱少明, 王雪珂, 杜秀丽, 等. 基于优化BP神经网络的气象环境下军事通信效能评估[J]. 火力与指挥控制, 2022, 47(3): 89-96.
QIU S M, WANG X K, DU X L, et al. Evaluation of military communication effectiveness under meteorological environments based on optimized BP neural network[J]. Firepower and Command and Control, 2022, 47(3): 89-96.
|
| [24] |
陈强, 陈长兴, 陈婷, 等. 基于灰色层次分析法-BP神经网络的数据链系统效能评估[J]. 弹箭与制导学报, 2016, 36(3): 109-113,116.
CHEN Q, CHEN C X, CHEN T, et al. Data link system effectiveness evaluation based on grey analytic hierarchy process - BP neural network[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(3): 109-113,116.
|
| [25] |
唐永果. 基于APSO-BP神经网络的末敏弹作战效能评估方法[J]. 兵器装备工程学报, 2024, 45(10): 100-106.
TANG Y G. Evaluation method for the operational effectiveness of terminal munitions based on APSO-BP neural network[J]. Journal of Armament and Equipment Engineering, 2024, 45(10): 100-106.
|
| [26] |
勾起跃, 邓满琪, 呼凯凯, 等. 基于灰色-粗糙集的雷达阵地工程建设风险评价指标体系构建[J]. 项目管理技术, 2024, 22(11): 102-107.
GOU Q Y, DENG M Q, HU K K, et al. Construction risk evaluation index system for radar positioning facilities based on grey-rough set[J]. Project Management Technology, 2024, 22(11): 102-107.
|
| [27] |
韩斌, 苏奎峰. 改进型RBF神经网络下目标威胁评估[J]. 价值工程, 2015, 34(6): 306-307. doi: 10.14018/j.cnki.cn13-1085/n.2015.06.170
HAN B, SU K F. Target threat assessment based on improved RBF neural network[J]. Engineering Economics, 2015, 34(6): 306-307. doi: 10.14018/j.cnki.cn13-1085/n.2015.06.170
|
| [28] |
冯卉, 宋宝军, 邢清华, 等. 基于直觉模糊VIKOR决策的反导作战预案评估方法[J]. 火力与指挥控制, 2022, 47(6): 17-21,27.
FENG H, SONG B J, XING Q H, et al. Evaluation method for anti-missile combat plans based on intuitionistic fuzzy VIKOR decision-making[J]. Firepower and Command and Control, 2022, 47(6): 17-21,27.
|
| [29] |
欧一鸣, 苏雍贺, 靳健, 等. 基于知识图谱的分布式光伏运维方案匹配方法[J]. 计算机集成制造系统, 2021(7): 1860-1870. doi: 10.13196/j.cims.2021.07.002
OU Y M, SU Y H, J J, et al. A method for matching distributed photovoltaic operation and mainte-nance schemes based on knowledge graph[J]. Computer Integrated Manufacturing Systems, 2021(7): 1860-1870. doi: 10.13196/j.cims.2021.07.002
|
| [30] |
DING C, LIU J, WANG D Y, et al. A knowledge graph-based muti-agent learning method for dynamic scheduling of flexible job shop[C]//2023 China Automation Congress(CAC). Chongqing, China: IEEE, 2023: 2832-2836.
|
| [31] |
MITRA D, GUPTA S. Plant disease identification and its solution using machine learning[C]//2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). London, United Kingdom: IEEE, 2022: 152-157.
|
| [32] |
Liu Z J. Fully Automated CFD Simulation System Research Based on Design Scheme Tree[J/OL]. Scientific Reports: 3975[2025-02-07]. https://doi.org/10.1038/s41598-024-83582-2
|
| [33] |
STAVRAKOUDIS D G, THEOCHARIS J B. Employing effective feature selection in Genetic Fuzzy Rule-Based Classification Systems[C]//2010 4th International Workshop on Genetic and Evolutionary Fuzzy Systems(GEFS). Mieres, Spain: IEEE, 2010: 21-26.
|
| [34] |
刘嘉, 黄馨漪, 和志成, 等. 基于统计规则匹配的防火墙优化方案设计[J]. 电子设计工程, 2019, 27(23): 135-138,143. doi: 10.14022/j.issn1674-6236.2019.23.028
LIU J, HUANG X Y, HE Z C, et al. Design of fire-wall optimization scheme based on statistical rule matching[J]. Electronic Design Engineering, 2019, 27(23): 135-138,143. doi: 10.14022/j.issn1674-6236.2019.23.028
|
| [35] |
ZHANG X, TAO X H, KONG P, et al. Automatic generation and optimization of power grid operation modes based on production simulation calculation results[C]// 2024 7th International Conference on Energy, Electrical and Power Engineering(CEEPE). Yangzhou, China: IEEE, 2024: 771-777.
|
| [36] |
何占豪, 杨君刚, 何占豪, 等. 基于事件图谱的作战指挥控制系统构建研究[C]//第十一届中国指挥控制大会论文集, 北京, 中国: 中国指挥与控制学会, 2023: 590-595.
|
| [37] |
张子伟, 郭齐胜, 董志明, 等. 体系作战效能评估与优化方法综述[J]. 系统仿真学报, 2022(2): 303-313. doi: 10.16182/j.issn1004731x.joss.21-0225
ZHANG Z W, GUO Q S, DONG Z M, et al. Review on evaluation and optimization methods for system combat effectiveness[J]. Journal of System Simulation, 2022(2): 303-313. doi: 10.16182/j.issn1004731x.joss.21-0225
|
| [38] |
ZHAO Y, DU K. A Matching Scheme from Supply and Demand Sides of Electronic Health Records Based on Blockchain[C]//2022 7th International Conference on Intelligent Computing and Signal Processing(ICSP). Xi’an, China: IEEE, 2022: 1089-1092.
|
| [39] |
郭健, 王磊, 张常龙, 等. 基于仿真推演的航天侦察体系效能评估[J]. 信息工程大学学报, 2023, 24(3): 364-369.
GUO J, WANG L, ZHANG C L, et al. Evaluation of the effectiveness of space reconnaissance system based on simulation analysis[J]. Journal of Information Engineering University, 2023, 24(3): 364-369.
|
| [40] |
王兴众, 王敏, 罗威, 等. 基于SAC算法的作战仿真推演智能决策技术[J]. 中国舰船研究, 2021, 16(6): 99-108. doi: 10.19693/j.issn.1673-3185.02099
WANG X Z, WANG M, LUO W, et al. Intelligent decision-making technology for combat simulation and scenario-based analysis based on SAC algorithm[J]. China Ship Research, 2021, 16(6): 99-108. doi: 10.19693/j.issn.1673-3185.02099
|
| [41] |
熊伟, 于小岚, 刘亚丽, 等. 基于贝叶斯网络的作战效能分析方法[J]. 科学技术与工程, 2023, 23(17): 7428-7435.
XIONG W, YU X L, LIU Y L, et al. Analysis method of combat effectiveness based on Bayesian network[J]. Science Technology and Engineering, 2023, 23(17): 7428-7435.
|
| [42] |
Janson Paul, Sivakumar Piraveen, Rajasegaran Jathushan. FewShotNeRF: Meta-learning-based novel view synthesis for rapid scene-specific adaptation[EB/OL]. [2024-08-09]. https://doi.org/10.48550/arXiv.2408.04803.
|
| [43] |
张涛. 面向装备作战效能评估的多源数据融合方法研究[D]. 长沙: 国防科技大学, 2022
|
| [44] |
杨文卓. 基于改进鲸鱼算法优化的支持向量机分类器的研究与应用[D]. 武汉: 武汉轻工大学, 2024
|
| [45] |
汪迪. 基于改进布谷鸟算法优化支持向量机的轴承故障识别研究[D]. 大连: 大连交通大学, 2023
|
| [46] |
CAI Y H, ZHOU Z Y, LI Z H. Optimization study of BP neural network based on genetic algorithm[C]// 2023 IEEE International Conference on Electrical, Automation and Computer Engineering (ICEACE). Changchun, China: IEEE, 2023: 1555-1560.
|
| [47] |
曹同宇, 乔栋, 郭子瑜, 等. 基于改进蜣螂优化算法优化BP神经网络[J]. 无线互联科技, 2024, 21(22): 109-114.
CAO T Y, QIAO D, GUO Z Y, et al. Optimization of BP neural network based on improved antlion optimization algorithm[J]. Wireless Internet Technology, 2024, 21(22): 109-114.
|
| [48] |
PAULOSKI J G, ZHANG Z, HUANG L, et al. Convolutional neural network training with distributed K-FAC[EB/OL]. [2020-07-01]. https://arxiv.org/abs/2007.00784
|
| [49] |
BARRIGA N A, STANESCU M, BESOAIN F. Improving RTS game AI by supervised policy learning, tactical search, and deep reinforcement learning[J]. Institute of Electrical and Electronics Engineers(IEEE), 2019, 14(3): 8-18.
|
| [50] |
张成苗. 基于强化学习的智能抗干扰决策方案[D]. 西安: 西安电子科技大学, 2022
|
| [51] |
潘长鹏, 王中发, 王海涛, 等. 基于BP神经网络的舰载机对陆打击作战效能评估[J]. 兵工自动化, 2022, 41(12): 9-12.
PAN C P, WANG Z F, WANG H T, et al. Evaluation of the combat effectiveness of carrier-based air-craft for ground attack based on BP neural network[J]. Automation of Military Industry, 2022, 41(12): 9-12.
|
| [52] |
BARRIGA N A, STANESCU M, BESOAIN F. Improving RTS game AI by supervised policy learning, tactical search, and deep reinforcement learning[J]. IEEE Computational Intelligence Magazine, 2019, 14(3): 8-18. doi: 10.1109/MCI.2019.2919363
|
| [53] |
丁沛灏. 基于深度学习的长时间序列预测方法研究与应用[D]. 重庆: 西南大学, 2024
|
| [54] |
孙志鹏. 基于网约车行程时间预测的多方式协同出行方案推荐及优化[D]. 西安: 长安大学, 2021
|
| [55] |
张尧. 激活函数导向的RNN算法优化[D]. 杭州: 浙江大学, 2017
|
| [56] |
张尧, 沈海斌. 非饱和区扩展的RNN算法优化[J]. 传感器与微系统, 2018, 37(3): 41-43. doi: 10.13873/j.1000-9787(2018)03-0041-03
ZHANG Y, SHEN H B. Optimization of RNN algorithm for non-saturated zone expansion[J]. Sensors and Microsystems, 2018, 37(3): 41-43. doi: 10.13873/j.1000-9787(2018)03-0041-03
|
| [57] |
袁琳娜, 杨良斌. 基于APSO的LSTM神经网络模型优化方法研究[J]. 重庆大学学报, 2024, 47(8): 103-111.
Yuan Linna, Yang Liangbin. Research on optimization method of LSTM neural network model based on APSO[J]. Journal of Chongqing University, 2024, 47(8): 103-111.
|
| [58] |
孙怡峰, 李智, 吴疆, 等. 作战方案驱动的可学习兵棋推演智能体研究[J]. 系统仿真学报, 2024, 36(7): 1525-1535. doi: 10.16182/j.issn1004731x.joss.23-0477
SUN Y F, LI Z, WU J, et al. Research on learning-based intelligent agents for war gaming driven by combat plans[J]. Journal of System Simulation, 2024, 36(7): 1525-1535. doi: 10.16182/j.issn1004731x.joss.23-0477
|
| [59] |
COUSSEMENT K, ABEDIN M Z, KRAUS M, et al. Explainable AI for enhanced decision-making[J]. Decision Support Systems, 2024, 184: 114276. doi: 10.1016/j.dss.2024.114276
|
| [60] |
Jin W Q, Du H Y, Zhao B. A comprehensive survey on multi-agent cooperative decision-making: Scenarios, approaches, challenges and perspectives[EB/OL]. [2025-03-17]. https://arxiv.org/abs/2503.13415.
|
| [61] |
Yu C Y, Mao Z Y, Wu Y L, et al. BA-GPT: Battlefield awareness interactive Q&A system based on RAG[C]// Proceedings of 4th 2024 International Conference on Autonomous Unmanned Systems(4th ICAUS 2024). Hangzhou, China: Chinese Academy of Engineering, 2024.
|
| [62] |
PAMUNGKAS R F, UTAMA I B K Y, HINDRIYANDHITO K, et al. A hybrid approach of Con-vLSTMBNN-DT and GPT-4 for real-time anomaly detection decision support in edge–cloud[J]. ICT Express, 2024, 10(5): 1026-1033. doi: 10.1016/j.icte.2024.07.007
|
| [63] |
WU H Y, LI S Y, WU D R. TMMM: Transformer in multimodal sentiment analysis under missing modalities[C]// 2024 International Joint Conference on Neural Networks (IJCNN). Yokohama, Japan: IEEE, 2024: 1-8.
|
| [64] |
HU M. Planning with a model: AlphaZero[M]. Berkeley, CA, USA: Springer Nature, 2023: 245-280.
|
| [65] |
GOECKS V G, WAYTOWICH N. COA-GPT: Generative pre-trained transformers for accelerated course of action development in military operations[C]//2024 International Conference on Military Communication and Information Systems (ICMCIS). Koblenz, Germany: IEEE, 2024.
|