• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 33 Issue 6
Dec  2025
Turn off MathJax
Article Contents
BIAN Yangzhen, XIAO Zongliang, YANG Jian, ZHONG Quanming, DING Yi, ZHANG Lin. Simulation of PEMFC Voltage Stabilization System for Underwater Unmanned Power Platform Based on Fuzzy Control[J]. Journal of Unmanned Undersea Systems, 2025, 33(6): 1014-1023. doi: 10.11993/j.issn.2096-3920.2025-0061
Citation: BIAN Yangzhen, XIAO Zongliang, YANG Jian, ZHONG Quanming, DING Yi, ZHANG Lin. Simulation of PEMFC Voltage Stabilization System for Underwater Unmanned Power Platform Based on Fuzzy Control[J]. Journal of Unmanned Undersea Systems, 2025, 33(6): 1014-1023. doi: 10.11993/j.issn.2096-3920.2025-0061

Simulation of PEMFC Voltage Stabilization System for Underwater Unmanned Power Platform Based on Fuzzy Control

doi: 10.11993/j.issn.2096-3920.2025-0061
  • Received Date: 2025-04-24
  • Accepted Date: 2025-07-04
  • Rev Recd Date: 2025-06-22
  • Available Online: 2025-11-04
  • Aiming at the demand of underwater unmanned power platform for an efficient and stable energy system, this paper focused on the problem of strong nonlinearity and easy fluctuation of the output voltage of proton exchange membrane fuel cell(PEMFC) and proposed a DC-DC converter voltage stabilization strategy based on the fuzzy proportional-integral-derivative(PID) adaptive control. Due to the strong nonlinear characteristics of the output voltage of the PEMFC and its fluctuation trend, the traditional control methods have limitations in the dynamic response and robustness. Therefore, a mathematical model of PEMFC, including Nernst voltage and activation, ohmic, and concentration loss and a Boost boost circuit model were established to analyze the voltage fluctuation mechanism. A fuzzy PID controller was designed, with a rule base that deeply coupled the PID control principle with the nonlinear characteristics of PEMFC, which realized the online dynamic self-tuning of PID parameters to optimize the duty cycle of the DC-DC converter in real time. The simulation results show that compared with the traditional PID control, the fuzzy PID control can shorten the system regulation time, and the steady-state error tends to be close to zero; the output voltage fluctuation range is narrowed to within ±0.5 V under the sudden current change condition, and the duty cycle response is more accurate. The fuzzy PID adaptive strategy significantly enhances the dynamic response speed and robustness of the system, providing a reliable theoretical cornerstone and solution for the efficient and stable operation of the energy system of the underwater unmanned platform.

     

  • loading
  • [1]
    张庚, 刘国金. 质子交换膜燃料电池输出电压稳定控制技术[J]. 电源学报, 2022, 20(1): 134-140.
    [2]
    MADHESWARAN K D, THANGAMUTHU M, GNANASEKARAN S, et al. Powering the future: Progress and hurdles in developing proton exchange membrane fuel cell components to achieve department of energy goals—A systematic review[J]. Sustainability, 2023, 15(22): 15923.
    [3]
    戚志东, 裴进, 胡迪. 基于分数阶 PID 控制的质子交换膜燃料电池前级功率变换器[J]. 电工技术学报, 2019, 34(S1): 235-243.
    [4]
    廉洁, 陈雨. 直接甲醇燃料电池模糊PID控制研究[J]. 河南科技大学学报: 自然科学版, 2012, 31(5): 584-588.

    LIAN J, CHEN Y. Research on fuzzy PID control of direct methanol fuel cell[J]. Journal of Henan University of Science and Technology: Natural Science Edition, 2012, 31(5): 584-588.
    [5]
    LI S, FAIRBANK M, JOHNSON C, et al. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 25(4): 738-750.
    [6]
    YANG B, LIANG B, QIAN Y, et al. Parameter identification of PEMFC via feedforward neural network-pelican optimization algorithm[J]. Applied Energy, 2024, 361: 122857. doi: 10.1016/j.apenergy.2024.122857
    [7]
    CHEN X, GU B, FENG W, et al. Research on control strategy of PEMFC air supply system for power and efficiency improvement[J]. Energy, 2024, 304: 132100. doi: 10.1016/j.energy.2024.132100
    [8]
    CHEN J H, HE P, CAI S J, et al. Modeling and temperature control of a water-cooled PEMFC system using intelligent algorithms[J]. Applied Energy, 2024, 372: 123790. doi: 10.1016/j.apenergy.2024.123790
    [9]
    王京阳. 光-氢-储直流系统变流器控制与功率协调策略研究[D]. 沈阳: 沈阳工业大学, 2023.
    [10]
    JIA J, LI Q, WANG Y, et al. Modeling and dynamic characteristic simulation of a proton exchange membrane fuel cell[J]. IEEE Transactions on Energy Conversion, 2009, 24(1): 283-291. doi: 10.1109/TEC.2008.2011837
    [11]
    韩爱国, 宋福豪, 田韶鹏, 等. 燃料电池系统建模与供气系统控制方法[J]. 江苏大学学报(自然科学版), 2024, 45(2): 147-153.
    [12]
    兰洪星. 氢燃料电池系统建模与控制策略研究[D]. 长春: 吉林大学, 2020.
    [13]
    BAROUD Z, BENMILOUD M, BENALIA A. Fuzzy selftuning PID controller for air supply on a PEM fuel cell system[C]//Internation Conference on Electrical Engineering. Piscataway, USA: IEEE, 2016: 361-366.
    [14]
    ZHANG Z, JIA L, HE H, et al. Modeling dynamic behaviors of a single cell proton exchange membrane fuel cell under different operating conditions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41(6): 689-698. doi: 10.1016/j.jtice.2010.02.003
    [15]
    裴尧旺, 陈凤祥, 胡哲, 等. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报: 工学版, 2022, 52(9): 2014-2024.
    [16]
    皇甫宜耿, 石麒, 李玉忍. 质子交换膜燃料电池系统建模仿真与控制[J]. 西北工业大学学报, 2015, 33(4): 682-687.

    HUANGFU Y G, SHI Q, LI Y R. Modeling simulation and control of proton exchange membrane fuel cell system[J]. Journal of Northwestern Polytechnical University, 2015, 33(4): 682-687.
    [17]
    刘佳, 李秀亮, 沈晔晔, 等. 燃料电池DC-DC变换器的设计与数字控制[J]. 上海交通大学学报, 2016, 50(6): 910-916.

    LIU J, LI X L, SHEN Y Y, et al. Design and digital control of DC-DC converter for fuel cell[J]. Journal of Shanghai Jiao Tong University, 2016, 50(6): 910-916.
    [18]
    MARIO M, CAMILLO V. New DC-DC converter for energy storage system interfacing in fuel cell hybrid electric vehicles[J]. IEEE Transactions on Power Electronics, 2007, 22(1): 301-308. doi: 10.1109/TPEL.2006.886650
    [19]
    黄宬, 黄亮, 卢叶, 等. 燃料电池 Buck 变换器的动态演化控制仿真[J]. 机电工程, 2014, 31(11): 1490-1494.
    [20]
    胡鹏, 刘波, 石瑛, 等. 质子交换膜燃料电池前级直流变换器的仿真研究[J]. 电源技术, 2016, 40(3): 561-564,708.
    [21]
    吴宇, 皇甫宜耿, 张琳, 等. 大扰动 Buck-Boost 变换器的鲁棒高阶滑模控制[J]. 中国电机工程学报, 2015, 35(7): 1740-1748.
    [22]
    魏成伟. 模糊—神经—PID融合的控制策略的工程应用[D]. 阜新: 辽宁工程技术大学, 2008.
    [23]
    苏明, 陈伦军, 林浩. 模糊PID控制及其MATLAB仿真[J]. 现代机械, 2004(4): 51-55.
    [24]
    李智辉, 杨曦, 肖刚, 等. 基于模糊PID控制的燃料电池稳压技术研究[J]. 武汉理工大学学报, 2024, 46(1): 138-143.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(6)

    Article Metrics

    Article Views(76) PDF Downloads(11) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return