• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
KUANG Rui, JIA Guotao, LUO Xin, LI Yantian, WANG Xian. Adaptive Bilateral Teleoperation Control Design in Task Space with Guaranteed Parameter Estimation[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0060
Citation: KUANG Rui, JIA Guotao, LUO Xin, LI Yantian, WANG Xian. Adaptive Bilateral Teleoperation Control Design in Task Space with Guaranteed Parameter Estimation[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0060

Adaptive Bilateral Teleoperation Control Design in Task Space with Guaranteed Parameter Estimation

doi: 10.11993/j.issn.2096-3920.2025-0060
  • Received Date: 2025-04-23
  • Accepted Date: 2025-06-11
  • Rev Recd Date: 2025-05-30
  • Available Online: 2025-10-15
  • In the framework of task-space, adaptive control techniques have been widely applied to bilateral teleoperation systems aiming at achieving precise synchronisation between master and slave robots in terms of Cartesian position and velocity. In order to improve the synchronisation of teleoperation systems, parameter estimation algorithms have been proposed in several studies to compensate for the effects of unknown dynamics. Nevertheless, designs based on traditional adaptive mechanisms have not yet achieved accurate estimation of the system parameters and therefore cannot fully compensate for the unknown dynamics. This paper proposes an adaptive control strategy for task-space teleoperation systems, which innovatively adopts the parameter error as the driving factor for parameter estimation update, and then designs a new adaptive law. The theoretical analysis proves that this strategy can not only achieve the position and velocity synchronization of teleoperation systems in task space, but also achieve the accurate estimation of system parameters at the same time. The convergence performance of parameter estimation is shown through simulation and theoretical analysis to significantly enhance the master-slave synchronization of teleoperation systems. Meanwhile, the effectiveness and superiority of this study are fully verified.

     

  • loading
  • [1]
    ANDERSON R J, SPONG M W. Bilateral control of teleoperators with time delay[J]. IEEE Transactions on Automatic Control, 1989, 34(5): 494-501. doi: 10.1109/9.24201
    [2]
    杨晛, 陈传志, 华长春. 力反馈水下遥操作系统稳定性分析[J]. 控制理论与应用, 2022, 39(11): 2115-2124.

    YANG X, CHEN C Z, HUA C C. Stability analysis of teleoperated underwater manipulator system with contact force feedback[J]. Control Theory & Applications, 2022, 39(11): 2115-2124.
    [3]
    WU Z G, XU Y, LU R, et al. Event-triggered control for consensus of multiagent systems with fixed/switching topologies[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2017, 48(10): 1736-1746.
    [4]
    WU Z G, SHI P, SU H, et al. Local synchronization of chaotic neural networks with sampled-data and saturating actuators[J]. IEEE Transactions on Cybernetics, 2014, 44(12): 2635-2645. doi: 10.1109/TCYB.2014.2312004
    [5]
    YANG Y, HUA C, GUAN X. Synchronization control for bilateral teleoperation system with prescribed performance under asymmetric time delay[J]. Nonlinear Dynamics, 2015, 81: 481-493. doi: 10.1007/s11071-015-2006-4
    [6]
    KANG Y, LI Z, CAO X, et al. Robust control of motion/force for robotic manipulators with random time delays[J]. IEEE Transactions on Control Systems Technology, 2012, 21(5): 1708-1718.
    [7]
    WANG F, WANG T, YU Y, et al. Adaptive synchronization control for robotics teleoperator in the presence of input saturation, uncertainties and time delays[C]//2023 42nd Chinese Control Conference. Tianjin, China: IEEE, 2023: 2282-2287.
    [8]
    JING B, NA J, DUAN H, et al. A USDE-based control for bilateral teleoperation systems with time-varying delays[J]. IEEE Transactions on Automation Science and Engineering, 2024, 22: 407-417.
    [9]
    张建军, 刘卫东, 高立娥, 等. 水下机械手不确定遥操作自适应双边控制[J]. 北京航空航天大学学报, 2018, 44(9): 1918-1925.

    ZHANG J J, LIU W D, GAO L E, et al. Adaptive bilateral control for underwater manipulator in uncertainty teleoperation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1918-1925.
    [10]
    NGUYEN T V, LIU Y C. Advanced finite-time control for bilateral teleoperators with delays and uncertainties[J]. IEEE Access, 2021, 9: 141951-141960. doi: 10.1109/ACCESS.2021.3119578
    [11]
    NA J, HERRMANN G, REN X, et al. Robust adaptive finite-time parameter estimation and control of nonlinear systems[C]//2011 IEEE International Symposium on Intelligent Control. Denver, CO, USA: IEEE, 2011: 1014-1019.
    [12]
    NA J, MAHYUDDIN M N, HERRMANN G, et al. Robust adaptive finite‐time parameter estimation and control for robotic systems[J]. International Journal of Robust and Nonlinear Control, 2015, 25(16): 3045-3071. doi: 10.1002/rnc.3247
    [13]
    JING B, NA J, GAO G , et al. Robust adaptive control for robotic systems with guaranteed parameter estimation[J]. Springer Berlin Heidelberg, 2016: 341-352.
    [14]
    ABIDI K, YILDIZ Y, KORPE B E. Explicit time‐delay compensation in teleoperation: An adaptive control approach[J]. International Journal of Robust and Nonlinear Control, 2016, 26(15): 3388-3403. doi: 10.1002/rnc.3513
    [15]
    LIU Y C. Task-space bilateral teleoperation systems for heterogeneous robots with time-varying delays[J]. Robotica, 2015, 33(10): 2065-2082. doi: 10.1017/S0263574714001295
    [16]
    SHEN H, PAN Y J. Improving tracking performance of nonlinear uncertain bilateral teleoperation systems with time-varying delays and disturbances[J]. IEEE/ASME Transactions on Mechatronics, 2019, 25(3): 1171-1181.
    [17]
    SPONG M W, HUTCHINSON S, VIDYASAGAR M. Robot modeling and control[M]. New York: Wiley, 2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article Views(21) PDF Downloads(0) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return