Citation: | XUE Zhengchun, Chen Jianyu, SHENG Longhan. Damage prediction of reinforced concrete slab under underwater near-field explosion based on machine learning[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0059 |
[1] |
马上, 王振清, 陈叶青, 等. 水中爆炸作用下混凝土重力坝损伤研究[J]. 混凝土, 2023(11): 63-71.
MA S, WANG Z Q, CHEN Y Q, et al. Study on damage of concrete gravity dam under underwater explosion loading[J]. Concrete, 2023(11): 63-71.
|
[2] |
COLE R H. Underwater explosions[M]. Princeton: Princeton University Press, 1948.
|
[3] |
WANG J, GUO J, YAO X L, et al. Dynamic buckling of stiffened plates subjected to explosion impact loads[J]. Shock Waves, 2017, 27: 37-52. doi: 10.1007/s00193-016-0638-z
|
[4] |
HOLMQUIST T J. , JOHNSON G R. , COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[J]. Proceedings of the Fourteenth International Symposium on Ballistics, 1993, 1, 591-600.
|
[5] |
周飞, 李贺东, 吴昊. 水中近场爆炸下钢筋混凝土板局部破坏模式数值模拟研究[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2024, 25(08): 650-669.
ZHOU, F. , LI, H. , WU, H. , & ZHOU, A. F. (2024). Numerical simulation study on local failure mode of reinforced concrete slabs under near-field explosion in water[J]. Journal of Zhejiang University SCIENCE A, 25(8), 650-669.
|
[6] |
HOLMQUIST T J, JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures[J]. Journal of Applied Mechanics, 2011, 109(12): 051003.
|
[7] |
刘丽滨, 李海涛, 刁爱民, 等. 水下爆炸船体梁总体响应特性数值模拟[J]. 高压物理学报, 2021, 35(6): 178-185.
LIU L B, LI H T, DIAO A M, et al. Numerical simulation of overall response characteristics of ship beams under underwater explosion[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 178-185.
|
[8] |
朱玉富, 赵春风, 周志航. 基于机器学习的钢筋混凝土板在爆炸作用下的最大位移预测模型[J]. 高压物理学报, 2023, 37(2): 92-106.
ZHU Y F, ZHAO C F, ZHOU Z H. Maximum displacement prediction model of reinforced concrete slab under blast loading based on machine learning[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 92-106.
|
[9] |
Li Q L, Wang Z T, Chen W S, et al. Advancing blast fragmentation simulation of RC slabs: A graph neural network approach[J]. Engineering Structures, 2024, 308: 118009. doi: 10.1016/j.engstruct.2024.118009
|
[10] |
FARIS H. MIRJALILI S. ALJARAH I. Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding scheme[J]. International Journal of Machine Learning and Cybernetics, 2019, 10: 2901-2920. doi: 10.1007/s13042-018-00913-2
|
[11] |
赵春风, 向思麒, 朱玉富. 基于机器学习的RC板爆炸两阶段损伤评估模型[J]. 建筑结构学报, 2025, 46(1): 212-222.
ZHAO C F, XIANG S Q, ZHU Y F. Two-stage damage assessment model for RC slabs under blast loading based on machine learning[J]. Journal of Building Structures, 2025, 46(1): 212-222.
|
[12] |
WANG W, ZHANG D, LU F Y, et al. Experimental study on scaling the explosion resistance of a oneway square reinforced concrete slab under a close-in blast loading[J]. International Journal of Impact Engineering, 2012, 49: 158-164. doi: 10.1016/j.ijimpeng.2012.03.010
|
[13] |
刘靖晗, 唐廷, 韦灼彬, 等. 水下爆炸作用下高桩码头损伤特性数值模拟研究[J]. 兵器装备工程学报, 2024, 45(10): 53-60.
LIU J H, TANG T, WEI Z B, et al. Numerical simulation of damage characteristics of high-pile wharf under underwater explosion[J]. Journal of Ordnance Equipment Engineering, 2024, 45(10): 53-60.
|
[14] |
胡锦华. 水下接触爆炸下钢筋混凝土板毁伤模式探究[J]. 工程爆破, 2022, 28(3): 17-23.
HU J H. Study on damage modes of reinforced concrete slabs under underwater contact explosion[J]. Engineering Blasting, 2022, 28(3): 17-23.
|
[15] |
BILLINGS, S. A. , & VOON, W. S. F. Least squares parameter estimation algorithms for non-linear systems. International[J] Journal of Systems Science, 1984, 15(6), 601-615.
|
[16] |
HAGAN M T, MENHAJ M B. Training feed forward networks with the Marquardt algorithm[J]. IEEE transactions on Neural Networks, 1994, 5(6): 989-993. doi: 10.1109/72.329697
|
[17] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. nature, 1986, 323(6088): 533-536. doi: 10.1038/323533a0
|
[18] |
He K, Zhang X, Ren S, et al. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[C]//015 IEEE International Conference on Computer Vision(ICCV). Santiago, Chile: ICCV, 2015: 1026-1034.
|
[19] |
SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural networks, 2015, 61: 85-117. doi: 10.1016/j.neunet.2014.09.003
|
[20] |
ZHANG, W. NIU, L. ZHANG, D. et al. Hw-adam: Fpga-based accelerator for adaptive moment estimation[J]. Electronics, 2023, 12(2): 263. doi: 10.3390/electronics12020263
|
[21] |
WIANGKHAM A, ARIYARIT A, AENGCHUAN P. Prediction of the influence of loading rate and sugarcane leaves concentration on fracture toughness of sugarcane leaves and epoxy composite using artificial intelligence[J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103188. doi: 10.1016/j.tafmec.2021.103188
|
[22] |
REN S F, ZHAO P F, WANG S P, et al. Damage prediction of stiffened plates subjected to underwater contact explosion using the machine learning-based method[J]. Ocean Engineering, 2022, 266: 112839. doi: 10.1016/j.oceaneng.2022.112839
|
[23] |
于玲玲, 张飞, 何文凯. 考虑地应力与先爆孔损伤的光面爆破数值模拟[J]. 地下空间与工程学报, 2024, 20(2): 636-644.
YU L L, ZHANG F, HE W K. Numerical simulation of smooth blasting considering in-situ stress and pre-blast hole damage[J]. Chinese Journal of Underground Space and Engineering, 2024, 20(2): 636-644.
|
[24] |
PENG X, HU Z, LI T. Neural network based combining prediction model and its application in ship motion prediction[C]//2010 8th World Congress on Intelligent Control and Automation. Jinan, China: IEEE, 2010: 5624-5627.
|
[25] |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. doi: 10.1126/science.1127647
|
[26] |
SRIVASTAVA N. HINTON G E, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal Of Machine Learning Research, 2014, 15(1): 1929-1958.
|