Citation: | ZOU Pengjun, LIN Xinghua, ZHANG Junxia, WANG Hao, WANG Xinting, WANG Hao. Study on the Dynamic Interaction between Lower Limb Posture and Flow Field Environment during Underwater Diver Motion[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0052 |
[1] |
何永兰. 海洋经济发展潜力研究[J]. 合作经济与科技, 2024, 7: 17-21. doi: 10.3969/j.issn.1672-190X.2024.10.006
HE Y L. Research on the Development Potential of the Marine Economy[J]. Cooperative Economy and Science & Technology, 2024, 7: 17-21. doi: 10.3969/j.issn.1672-190X.2024.10.006
|
[2] |
邓红超, 刘本奇, 史磊. 水下蛙人安防系统现状及发展趋势[C]//2022年中国西部声学学术交流会. 中国新疆乌鲁木齐: 上海船舶电子设备研究所, 2022: 312-316.
|
[3] |
张志伟, 方泽江, 何润民, 等. 美军水下特种作战装备的发展现状及趋势分析[J]. 水下无人系统学报, 2024, 32(5): 962-970.
ZHANG Z W, FANG Z J, HE R M, et al. Development status and trend of U. S. equipment for underwater special operations[J]. 2024, 32(5): 962-970.
|
[4] |
刘宁, 李珊, 茶文丽. 蛙人装备研究现状及发展展望[J]. 中国造船, 2018, 59(4): 212-222. doi: 10.3969/j.issn.1000-4882.2018.04.023
LIU N, LI S, CHA W L. Research status and development prospect of frogman equipment[J]. Shipbuilding of China, 2018, 59(4): 212-222. doi: 10.3969/j.issn.1000-4882.2018.04.023
|
[5] |
刘文武, 俞旭华, 徐佳骏, 等. 湿式蛙人输送艇水下风险应急处置刍议[J]. 水下无人系统学报, 2022, 30(6): 815-819. doi: 10.11993/j.issn.2096-3920.2022-0056
LIU W W, YU X H, XU J J, et al. Emergent treatment of underwater risks related to wet diver delivery vehicle[J]. Journal of unmanned undersea systems, 2022, 30(6): 815-819. doi: 10.11993/j.issn.2096-3920.2022-0056
|
[6] |
黎洁, 范军, 李兵. 蛙人推进器声散射特性研究[J]. 水下无人系统学报, 2022, 30(6): 733-739. doi: 10.11993/j.issn.2096-3920.2022-0026
LI J, FAN J, LI B. Acoustic scattering characteristics of a diver propulsion vehicle[J]. Journal of unmanned undersea systems, 2022, 30(6): 733-739. doi: 10.11993/j.issn.2096-3920.2022-0026
|
[7] |
付学志, 石建飞, 江源. 蛙人水下作战系统装备发展现状及趋势[J]. 电声技术, 2019, 43(12): 11-17.
FU X Z, SHI J F, JIANG Y. The development of the frogman underwater combat equipment system[J]. Audio Engineering, 2019, 43(12): 11-17.
|
[8] |
朱敏, 张镇, 杨壮滔, 等. 国外水面/水下两用艇水动力设计启示[J]. 水下无人系统学报, 2022, 30(6): 714-719. doi: 10.11993/j.issn.2096-3920.2022-0022
ZHU M, ZHANG Z, YANG Z T, et al. Inspiration of hydrodynamic design of surface/ underwater dual-purpose vehicle[J]. Journal of unmanned undersea systems, 2022, 30(6): 714-719. doi: 10.11993/j.issn.2096-3920.2022-0022
|
[9] |
QIN H, LI Z, XU S, et al. Review of diver propulsion vehicle: A review[J]. Physics of Fluids, 2024, 36(10): 25.
|
[10] |
XIA H , KHAN A M , LI Z , et al. Wearable robots for human underwater movement ability enhancement: A survey[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(6): 967-977.
|
[11] |
YIN R, LI L, WANG L, et al. Self-healing Au/PVDF-HFP composite ionic gel for flexible underwater pressure sensor[J]. Journal of Semiconductors, 2023, 44(3): 80-98.
|
[12] |
LIN G, LI H, MA H, et al. Human-in-the-loop consensus control for nonlinear multi-agent systems with actuator faults[J]. IEEE/CAA Journal of Automatica Sinica. 2022, 9(1): 111-122.
|
[13] |
NEUHAUS P D, O’ SULLIVAN M O, EATON D, et al. Concept designs for underwater swimming exoskeletons[C]//2004 IEEE International Conference on Robotics and Automation. New Orleans, LA, USA: IEEE, 2004: 4893-4898.
|
[14] |
王斌. 水下助推机器人的人体运动意图感知方法研究[D]. 成都: 电子科技大学, 2020.
|
[15] |
李兴勇. 水下助推机器人控制系统设计[D]. 成都: 电子科技大学, 2017.
|
[16] |
秦睿. 水下外骨骼机器人动力学特性研究[D]. 成都: 电子科技大学, 2017.
|
[17] |
ZHANG Z D, ZHOU Z H, ZHENG E H, et al. Concept and prototype design of an underwater soft exoskeleton[C]//IEEE International Conference on Cyborg and Bionic Systems(CBS). China: IEEE, 2018: 139-143.
|
[18] |
Wang Q N, ZHOU Z H, ZHANG Z D, et al. An underwater lower-extremity soft exoskeleton for breaststroke assistance[J]. IEEE Transactions on Medical Robotics and Bionics. 2020, 2(3): 447-462.
|
[19] |
ZAÏDI H, FOHANNO S, TAÏAR R, et al. Turbulence model choice for the calculation of drag forces when using the CFD method[J]. Journal of Biomechanics. 2009, 43(3): 405-411.
|
[20] |
Li H S, HAN F L, ZHU H T, et al. Hydrodynamic model of diver-DPV coupled multi-body and its underwater cruising numerical simulation[J]. Journal of Marine Science and Engineering, 2021, 9(2): 140-140. doi: 10.3390/jmse9020140
|
[21] |
夏鹏泽, 曾长松, 王永成, 等. 中国军人基准人体模型系列: CHN. 03141014.6[P]. 2005-01-19.
|
[22] |
潘慧炬, 马楚虹, 沈水富. 人体四肢各主要关节最大运动幅度的研究[J]. 浙江师大学报(自然科学版), 1995, 18(3): 64-68.
PAN H J, MA C H, SHEN S F. A Research on the maximum range of motion of each major joint in human limbs in both dynamic and static states[J]. Journal of ZheJiang Normal University (Nat. Sci. ), 1995, 18(3): 64-68.
|
[23] |
YANG J, LI T Z, CHEN Z Y, et al. Hydrodynamic characteristics of different undulatory underwater swimming positions based on multi-body motion numerical simulation method[J]. International Journal of Environmental Research and Public Health, 2021, 18(22): 12263-12263. doi: 10.3390/ijerph182212263
|
[24] |
ENGELS T , KOLOMENSKIY D , SCHNEIDER K, et al. Numerical simulation of vortex-induced drag of elastic swimmer models[J]. Theoretical and Applied Mechanics Letters, 2017, 7(5): 280-285.
|
[25] |
王新峰, 王连泽, 阎卫星. 游泳运动中静态阻力的数值模拟[J]. 北京体育大学学报, 2005(02): 206-207. doi: 10.3969/j.issn.1007-3612.2005.02.023
WANG X F, WANG L Z, YAN W X. Numerical Simulation of Stiction in Swimming[J]. Journal of Beijing Sport University, 2005(02): 206-207. doi: 10.3969/j.issn.1007-3612.2005.02.023
|
[26] |
YANG H, LIU N, LI M, et al. Design and optimization of heat pipe-assisted liquid cooling structure for power battery thermal management based on NSGA-II and entropy Weight-TOPSIS method[J]. Applied Thermal Engineering, 2025, 272: 126416. doi: 10.1016/j.applthermaleng.2025.126416
|
[27] |
ABBAS M Y, ALSAIF A. Multi-functional optimization of mechanical strength and electrical properties in graphite-reinforced cement composites using a hybrid CatBoost-NSGA-II framework[J]. Materials Today Communications, 2025, 46: 112716. doi: 10.1016/j.mtcomm.2025.112716
|
[28] |
FANG J, TAN C Y, TAI C V, et al. Multi-objective optimization of the surface roughness of ti-sic composites using NSGA-II based on TOPSIS and Box–Behnken design[J]. Journal of Materials Engineering and Performance, 2025: 1-17.
|