• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
ZOU Pengjun, LIN Xinghua, ZHANG Junxia, WANG Hao, WANG Xinting, WANG Hao. Study on the Dynamic Interaction between Lower Limb Posture and Flow Field Environment during Underwater Diver Motion[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0052
Citation: ZOU Pengjun, LIN Xinghua, ZHANG Junxia, WANG Hao, WANG Xinting, WANG Hao. Study on the Dynamic Interaction between Lower Limb Posture and Flow Field Environment during Underwater Diver Motion[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0052

Study on the Dynamic Interaction between Lower Limb Posture and Flow Field Environment during Underwater Diver Motion

doi: 10.11993/j.issn.2096-3920.2025-0052
  • Received Date: 2025-04-03
  • Accepted Date: 2025-05-28
  • Rev Recd Date: 2025-05-23
  • Available Online: 2025-09-12
  • In this paper, the dynamic coupling mechanism between the posture of the lower limbs and the flow field environment in the underwater movement of frogmen is deeply studied. Firstly, using the fluid-structure interaction simulation method, a numerical model of the frogman's lower limb dynamics with wearable assistive equipment was constructed, and the reliability of the numerical model was verified by comparing the experimental results with the simulation data. Secondly, based on the validated model, the influence of water flow impact on the posture of the frogman's lower limbs at different speeds was analyzed and the rule of joint angles was revealed. Finally, the Pareto optimal solution set of lower limb joint angles at different speeds was obtained based on the NSGA-II multi-objective optimization algorithm, the drag optimization strategy based on attitude compensation was proposed, and the optimization effect was verified through experiments. The results show that at a fixed speed, the lower limb posture experiences three phases: "maximum deformation - reverse adjustment - dynamic equilibrium." As the speed increases, the stable posture of the lower limb tends to flow field adaptive equilibrium point. Within the 1~3 kn speed range, the compensation between the posture stabilization angle and the optimal angle of resistance for the hip, knee, and ankle joints is −0.78°, 2.28°, and −1.05°. In the experimental verification of lower limb attitude optimization, the speed is increased by 9.09% compared with the free state, which indicates that the underwater kinematic performance can be improved by lower limb attitude angle constraints. This provides a quantitative basis for the closed-loop control of the joint module of the underwater assisted exoskeleton and the overall design of the flow field adaptation.

     

  • loading
  • [1]
    何永兰. 海洋经济发展潜力研究[J]. 合作经济与科技, 2024, 7: 17-21. doi: 10.3969/j.issn.1672-190X.2024.10.006

    HE Y L. Research on the Development Potential of the Marine Economy[J]. Cooperative Economy and Science & Technology, 2024, 7: 17-21. doi: 10.3969/j.issn.1672-190X.2024.10.006
    [2]
    邓红超, 刘本奇, 史磊. 水下蛙人安防系统现状及发展趋势[C]//2022年中国西部声学学术交流会. 中国新疆乌鲁木齐: 上海船舶电子设备研究所, 2022: 312-316.
    [3]
    张志伟, 方泽江, 何润民, 等. 美军水下特种作战装备的发展现状及趋势分析[J]. 水下无人系统学报, 2024, 32(5): 962-970.

    ZHANG Z W, FANG Z J, HE R M, et al. Development status and trend of U. S. equipment for underwater special operations[J]. 2024, 32(5): 962-970.
    [4]
    刘宁, 李珊, 茶文丽. 蛙人装备研究现状及发展展望[J]. 中国造船, 2018, 59(4): 212-222. doi: 10.3969/j.issn.1000-4882.2018.04.023

    LIU N, LI S, CHA W L. Research status and development prospect of frogman equipment[J]. Shipbuilding of China, 2018, 59(4): 212-222. doi: 10.3969/j.issn.1000-4882.2018.04.023
    [5]
    刘文武, 俞旭华, 徐佳骏, 等. 湿式蛙人输送艇水下风险应急处置刍议[J]. 水下无人系统学报, 2022, 30(6): 815-819. doi: 10.11993/j.issn.2096-3920.2022-0056

    LIU W W, YU X H, XU J J, et al. Emergent treatment of underwater risks related to wet diver delivery vehicle[J]. Journal of unmanned undersea systems, 2022, 30(6): 815-819. doi: 10.11993/j.issn.2096-3920.2022-0056
    [6]
    黎洁, 范军, 李兵. 蛙人推进器声散射特性研究[J]. 水下无人系统学报, 2022, 30(6): 733-739. doi: 10.11993/j.issn.2096-3920.2022-0026

    LI J, FAN J, LI B. Acoustic scattering characteristics of a diver propulsion vehicle[J]. Journal of unmanned undersea systems, 2022, 30(6): 733-739. doi: 10.11993/j.issn.2096-3920.2022-0026
    [7]
    付学志, 石建飞, 江源. 蛙人水下作战系统装备发展现状及趋势[J]. 电声技术, 2019, 43(12): 11-17.

    FU X Z, SHI J F, JIANG Y. The development of the frogman underwater combat equipment system[J]. Audio Engineering, 2019, 43(12): 11-17.
    [8]
    朱敏, 张镇, 杨壮滔, 等. 国外水面/水下两用艇水动力设计启示[J]. 水下无人系统学报, 2022, 30(6): 714-719. doi: 10.11993/j.issn.2096-3920.2022-0022

    ZHU M, ZHANG Z, YANG Z T, et al. Inspiration of hydrodynamic design of surface/ underwater dual-purpose vehicle[J]. Journal of unmanned undersea systems, 2022, 30(6): 714-719. doi: 10.11993/j.issn.2096-3920.2022-0022
    [9]
    QIN H, LI Z, XU S, et al. Review of diver propulsion vehicle: A review[J]. Physics of Fluids, 2024, 36(10): 25.
    [10]
    XIA H , KHAN A M , LI Z , et al. Wearable robots for human underwater movement ability enhancement: A survey[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(6): 967-977.
    [11]
    YIN R, LI L, WANG L, et al. Self-healing Au/PVDF-HFP composite ionic gel for flexible underwater pressure sensor[J]. Journal of Semiconductors, 2023, 44(3): 80-98.
    [12]
    LIN G, LI H, MA H, et al. Human-in-the-loop consensus control for nonlinear multi-agent systems with actuator faults[J]. IEEE/CAA Journal of Automatica Sinica. 2022, 9(1): 111-122.
    [13]
    NEUHAUS P D, O’ SULLIVAN M O, EATON D, et al. Concept designs for underwater swimming exoskeletons[C]//2004 IEEE International Conference on Robotics and Automation. New Orleans, LA, USA: IEEE, 2004: 4893-4898.
    [14]
    王斌. 水下助推机器人的人体运动意图感知方法研究[D]. 成都: 电子科技大学, 2020.
    [15]
    李兴勇. 水下助推机器人控制系统设计[D]. 成都: 电子科技大学, 2017.
    [16]
    秦睿. 水下外骨骼机器人动力学特性研究[D]. 成都: 电子科技大学, 2017.
    [17]
    ZHANG Z D, ZHOU Z H, ZHENG E H, et al. Concept and prototype design of an underwater soft exoskeleton[C]//IEEE International Conference on Cyborg and Bionic Systems(CBS). China: IEEE, 2018: 139-143.
    [18]
    Wang Q N, ZHOU Z H, ZHANG Z D, et al. An underwater lower-extremity soft exoskeleton for breaststroke assistance[J]. IEEE Transactions on Medical Robotics and Bionics. 2020, 2(3): 447-462.
    [19]
    ZAÏDI H, FOHANNO S, TAÏAR R, et al. Turbulence model choice for the calculation of drag forces when using the CFD method[J]. Journal of Biomechanics. 2009, 43(3): 405-411.
    [20]
    Li H S, HAN F L, ZHU H T, et al. Hydrodynamic model of diver-DPV coupled multi-body and its underwater cruising numerical simulation[J]. Journal of Marine Science and Engineering, 2021, 9(2): 140-140. doi: 10.3390/jmse9020140
    [21]
    夏鹏泽, 曾长松, 王永成, 等. 中国军人基准人体模型系列: CHN. 03141014.6[P]. 2005-01-19.
    [22]
    潘慧炬, 马楚虹, 沈水富. 人体四肢各主要关节最大运动幅度的研究[J]. 浙江师大学报(自然科学版), 1995, 18(3): 64-68.

    PAN H J, MA C H, SHEN S F. A Research on the maximum range of motion of each major joint in human limbs in both dynamic and static states[J]. Journal of ZheJiang Normal University (Nat. Sci. ), 1995, 18(3): 64-68.
    [23]
    YANG J, LI T Z, CHEN Z Y, et al. Hydrodynamic characteristics of different undulatory underwater swimming positions based on multi-body motion numerical simulation method[J]. International Journal of Environmental Research and Public Health, 2021, 18(22): 12263-12263. doi: 10.3390/ijerph182212263
    [24]
    ENGELS T , KOLOMENSKIY D , SCHNEIDER K, et al. Numerical simulation of vortex-induced drag of elastic swimmer models[J]. Theoretical and Applied Mechanics Letters, 2017, 7(5): 280-285.
    [25]
    王新峰, 王连泽, 阎卫星. 游泳运动中静态阻力的数值模拟[J]. 北京体育大学学报, 2005(02): 206-207. doi: 10.3969/j.issn.1007-3612.2005.02.023

    WANG X F, WANG L Z, YAN W X. Numerical Simulation of Stiction in Swimming[J]. Journal of Beijing Sport University, 2005(02): 206-207. doi: 10.3969/j.issn.1007-3612.2005.02.023
    [26]
    YANG H, LIU N, LI M, et al. Design and optimization of heat pipe-assisted liquid cooling structure for power battery thermal management based on NSGA-II and entropy Weight-TOPSIS method[J]. Applied Thermal Engineering, 2025, 272: 126416. doi: 10.1016/j.applthermaleng.2025.126416
    [27]
    ABBAS M Y, ALSAIF A. Multi-functional optimization of mechanical strength and electrical properties in graphite-reinforced cement composites using a hybrid CatBoost-NSGA-II framework[J]. Materials Today Communications, 2025, 46: 112716. doi: 10.1016/j.mtcomm.2025.112716
    [28]
    FANG J, TAN C Y, TAI C V, et al. Multi-objective optimization of the surface roughness of ti-sic composites using NSGA-II based on TOPSIS and Box–Behnken design[J]. Journal of Materials Engineering and Performance, 2025: 1-17.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(7)

    Article Metrics

    Article Views(0) PDF Downloads(1) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return