
| Citation: | ZHANG Jianting, JIANG Xiaopeng, QU Chunliang, ZHANG Xitong, XU Bo. Research and Implementation of Aperture Measurement Method for Irregular Broken Hole of Target Plate[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0051 |
| [1] |
DAVID F、IAN C、PAUL H. A fast and accurate model for the creation of explosion fragments with improved fragment shape and dimensions[J]. Defence Technology, 2022, 18: 159-169 doi: 10.1016/j.dt.2020.12.004
|
| [2] |
王冬生. 基于光纤光栅系统的流量测量研究[D]. 秦皇岛: 燕山大学, 2014.
|
| [3] |
罗守南. 基于超声多普勒方法的管道流量测量研究[D]. 北京: 清华大学, 2004.
|
| [4] |
肖骁. 基于亥姆霍兹线圈励磁的电容式电磁流量测量技术研究[D]. 成都: 电子科技大学, 2014.
|
| [5] |
陶晓磊. 基于调节阀的流量测量方法研究[D]. 杭州: 中国计量大学, 2014.
|
| [6] |
沈昱明. 流量测量中若干问题的计量学基本原则[J]. 计量学报, 2008, 29(5): 472-474.
SHEN Y M, Principles of metrology for problems in the flow measurement[J]. Acta Metrologica Sinica, 2008, 29(5): 472-474.
|
| [7] |
金珍珍, 梅武军, 周卫华, 等. 基于FPGA和单片机的孔径测量系统[J]. 轻工机械, 2022, 40(1): 71-77.
JIN Z Z, MEI W J, ZHOU W H, et al. Aperture measurement system based on FPGA and MCU[J]. Light Industry Machinery, 2022, 40(1): 71-77.
|
| [8] |
李治国, 马峰, 朱炜, 等. 基于深度学习神经网络的水中爆炸靶板变形响应预测研究[J]. 水下无人系统学报, 2024, 32(6): 1045-1052,1062.
LI Z G, MA F, ZHU W, et al. Prediction of deformation response of target plate in underwater explosion based on deep learning neural network[J]. Journal of Unmanned Undersea Systems, 2024, 32(6): 1045-1052,1062.
|
| [9] |
邵建军. 一种爆破型鱼雷战斗部对舰船毁伤效能评估方法[J]. 水下无人系统学报, 2017, 25(4): 272-277.
SHAO J J, An evaluation method for damaging efficiency of blasting torpedo warhead to warship[J]. Journal of Unmanned Undersea Systems, 2017, 25(4): 272-277.
|
| [10] |
谢振华, 宋存义. 工程流体力学[M]. 北京: 冶金工业出版社, 106-107.
|
| [11] |
于洪仕, 张涛, 葛利俊. 多孔孔板流出系数和压力损失的影响因素[J]. 化工自动化及仪表, 2016, 43(1): 20-22,88.
YU H S, ZHANG T, GE L J. Influencing factors for discharge coefficient and pressure loss of multi-hole orifice plate[J]. Control and Instruments in Chemical Industry, 2016, 43(1): 20-22,88.
|