• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
LIANG Xiao, YANG Chengbin, ZHANG Zhihao, LIU Dianyong, LI Wei, YU Changdong. A Verification Method of Formation Control of USV Cluster Based on Virtual-Real Integration[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0050
Citation: LIANG Xiao, YANG Chengbin, ZHANG Zhihao, LIU Dianyong, LI Wei, YU Changdong. A Verification Method of Formation Control of USV Cluster Based on Virtual-Real Integration[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0050

A Verification Method of Formation Control of USV Cluster Based on Virtual-Real Integration

doi: 10.11993/j.issn.2096-3920.2025-0050
  • Received Date: 2025-04-01
  • Accepted Date: 2025-05-08
  • Rev Recd Date: 2025-04-26
  • Available Online: 2025-07-21
  • In the field of unmanned surface vessel(USV) research, the verification and optimization of autonomous algorithms are pivotal for advancing the technology, which has important research value for improving system reliability, environmental adaptability and mission execution efficiency. With the rapid development of digital twin technology, validation methods based on virtual-real integration have become key technical approaches in intelligent control algorithm research. To this end, this paper proposes a verification method for USV cluster formation control based on virtual-real integration. First, the concept of a five-dimensional virtual-real integration model for USV cluster is introduced, providing a theoretical foundation for experimental validation. Second, a physical USV experimental platform is constructed to enable autonomous navigation and control in real maritime environments. Third, a virtual test environment is developed using Unity3D software, modeling the maritime environment and USV models while establishing real-time communication with physical nodes. Finally, an unmanned autonomous collaborative control algorithm is designed to achieve USV formation control of the USV cluster. Experimental results demonstrate that the proposed method effectively validates autonomous algorithms for USV clusters. This research provides new perspectives and paradigms for intelligent cooperative operations and simulation-based confrontation training of future maritime unmanned systems.

     

  • loading
  • [1]
    宋吉广, 李德隆, 冯亮, 等. 基于感知信息的USV目标环绕跟踪方法[J]. 水下无人系统学报, 2023, 31(5): 696-702. doi: 10.11993/j.issn.2096-3920.202206011

    SONG J G, LI D L, FENG L, et al. Target surround tracking method of USVs based on perception information[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 696-702. doi: 10.11993/j.issn.2096-3920.202206011
    [2]
    郭苗, 徐琰锋, 陈铢蕾. 基于博弈论的无人艇探查策略研究[J]. 水下无人系统学报, 2022, 30(6): 754-760. doi: 10.11993/j.issn.2096-3920.2022-0032

    GUO M, XU Y F, CHEN Z L. Research on unmanned surface vehicle detection strategy based on game theory[J]. Journal of Unmanned Undersea Systems, 2022, 30(6): 754-760. doi: 10.11993/j.issn.2096-3920.2022-0032
    [3]
    LI J, ZHANG G, JIANG C, et al. A survey of maritime unmanned search system: Theory, applications and future directions[J]. Ocean Engineering, 2023, 285: 11535.
    [4]
    于长东, 刘新阳, 陈聪, 等. 基于多智能体深度强化学习的无人艇集群博弈对抗研究[J]. 水下无人系统学报, 2024, 32(1): 79-86. doi: 10.11993/j.issn.2096-3920.2023-0159

    YU C D, LIU X Y, CHEN C, et al. Research on game confrontation of unmanned surface vehicles swarm based on multi-agent deep reinforcement learning[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 79-86. doi: 10.11993/j.issn.2096-3920.2023-0159
    [5]
    梁霄, 陈聪, 刘殿勇, 等. 面向自杀式无人机饱和攻击的海空跨域无人协同反制策略[J]. 水下无人系统学报, 2024, 32(2): 228-236. doi: 10.11993/j.issn.2096-3920.2024-0007

    LIANG X, CHEN C, LIU D Y, et al. Cooperative countermeasure strategy of sea-air cross-domain unmanned platforms for saturation attack of suicide UAVs[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 228-236. doi: 10.11993/j.issn.2096-3920.2024-0007
    [6]
    王志洋, 王龙金. 基于改进遗传算法的无人艇集群多任务分配路径规划[J]. 船舶工程, 2024, 46(4): 105-111.

    WANG Z Y, WANG L J. Global path planning for multi-task assignment based on improved genetic algorithm for multi-USV[J]. Ship Engineering, 2024, 46(4): 105-111.
    [7]
    YANG W, ZHONG W, ZHANG L, et al. A virtual reality approach to the assessment of damage effectiveness of naval artillery ammunition against unmanned surface vessels[J]. IEEE Access, 2023, 11: 93500-93510. doi: 10.1109/ACCESS.2023.3310214
    [8]
    GAN W H, QU X Q, SONG D L, et al. Multi-USV cooperative chasing strategy based on obstacles assistance and deep reinforcement learning[J]. IEEE Transactions on Automation Science and Engineering, 2023, 21(4): 5895-5910.
    [9]
    ZHAO Y, HAN F, HAN D, et al. Decision-making for the autonomous navigation of USVs based on deep reinforcement learning under IALA maritime buoyage system[J]. Ocean Engineering, 2022, 266: 112557. doi: 10.1016/j.oceaneng.2022.112557
    [10]
    ABU-AMARA F, BENSEFIA A, MOHAMMAD H, et al. Robot and virtual reality-based intervention in autism: A comprehensive review[J]. International Journal of Information Technology, 2021, 13(5): 1879-1891. doi: 10.1007/s41870-021-00740-9
    [11]
    WANG S, LAMBETA M, CHOU P W, et al. Tacto: A fast, flexible, and open-source simulator for high-resolution vision-based tactile sensors[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 3930-3937. doi: 10.1109/LRA.2022.3146945
    [12]
    ACOSTA B, YANG W, POSA M. Validating robotics simulators on real-world impacts[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 6471-6478. doi: 10.1109/LRA.2022.3174367
    [13]
    BRUNO F, BARBIERI L, MANGERUGA M, et al. Underwater augmented reality for improving the diving experience in submerged archaeological sites[J]. Ocean Engineering, 2019, 190: 106487. doi: 10.1016/j.oceaneng.2019.106487
    [14]
    BUKHARI A C, KIM Y G. A research on an intelligent multipurpose fuzzy semantic enhanced 3D virtual reality simulator for complex maritime missions[J]. Applied intelligence, 2013, 38: 193-209. doi: 10.1007/s10489-012-0365-9
    [15]
    NIE Y, LUAN X, GAN W, et al. Design of marine virtual simulation experiment platform based on Unity3D[C]//Global Oceans 2020: Singapore–US Gulf Coast. Biloxi, MS, USA: IEEE, 2020: 1-5.
    [16]
    LI H, HUANG F, CHEN Z. Virtual-reality-based online simulator design with a virtual simulation system for the docking of unmanned underwater vehicle[J]. Ocean Engineering, 2022, 266: 112780. doi: 10.1016/j.oceaneng.2022.112780
    [17]
    HU J, YANG X, LOU M, et al. Virtual-reality-based design and implementation with a parallel physical simulation platform for unmanned surface vehicle[C]//2023 International Conference on Cyber-Physical Social Intelligence (ICCSI). Xi’an, China: IEEE, 2023: 262-267.
    [18]
    苏星宇. 基于领航-跟随法的无人艇编队控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article Views(10) PDF Downloads(1) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return