• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Volume 33 Issue 4
Aug  2025
Turn off MathJax
Article Contents
CHEN Bowen, ZHANG Lin, SUN Qindong, YU Fajun. Optimization Design and Simulation of Acoustic Adaptation Structure for Underwater Gliders[J]. Journal of Unmanned Undersea Systems, 2025, 33(4): 589-598. doi: 10.11993/j.issn.2096-3920.2025-0042
Citation: CHEN Bowen, ZHANG Lin, SUN Qindong, YU Fajun. Optimization Design and Simulation of Acoustic Adaptation Structure for Underwater Gliders[J]. Journal of Unmanned Undersea Systems, 2025, 33(4): 589-598. doi: 10.11993/j.issn.2096-3920.2025-0042

Optimization Design and Simulation of Acoustic Adaptation Structure for Underwater Gliders

doi: 10.11993/j.issn.2096-3920.2025-0042
  • Received Date: 2025-03-05
  • Accepted Date: 2025-04-14
  • Rev Recd Date: 2025-03-28
  • Available Online: 2025-07-28
  • To address the technical bottleneck in balancing hydrodynamic efficiency and acoustic detection performance during the design of acoustic adaptation structures for long-endurance underwater gliders(UGs), this study proposed a dual-objective collaborative design method integrating computational fluid dynamics-finite element method(CFD-FEM) co-simulation. By coupling simulation of turbulent flow in arbitrary regions-computational continuum mechanics+(STAR-CCM+) for viscous flow analysis and COMSOL Multiphysics for acoustic-structure interaction, a parametric geometric model was proposed based on the Myring equation, utilizing the sharpness factor and aspect ratio as key variables. Multi-objective collaborative optimization was carried out by adopting intelligent optimization algorithms. The results indicate that the optimized acoustic adaptation structure achieves a total drag reduction of 10.4%–15.6% across a speed range of 0.5–3 m/s. Specifically, the configuration with an aspect ratio of 1.875 and a sharpness factor n = 2 exhibits a resistance reduction to 8.178 N at 1 m/s. Regarding acoustic performance, under 2 000 Hz plane wave incidence, the scattered sound pressure level increases by 1.5 dB; sidelobe suppression capability is enhanced by 2–3 dB, and acoustic reception directivity is improved significantly. Validation through angle of attack tests demonstrates that the optimized solution maintains drag reductions of 6%-17% within a ±10° angle of attack, effectively resolving the conflicting requirements between hydrodynamic resistance and acoustic performance inherent in traditional designs. The constructed “fluid-structure-acoustics” multiphysics collaborative optimization paradigm provides theoretical support for the engineering design of next-generation long-endurance, high-detection, and composite UGs and expands the UG multidisciplinary optimization methodology system.

     

  • loading
  • [1]
    MUGGLI F A, HOLBEIN P, DUPONT P. CFD calculation of a mixed flow pump characteristic from shutoff to maximum flow[J]. Journal of Fluids Engineering, 2002, 124(3): 798-802. doi: 10.1115/1.1478061
    [2]
    谷海涛, 林扬, 胡志强, 等. 基于代理模型的水下滑翔机机翼设计优化方法[J]. 机械工程学报, 2009, 45(12): 7-14. doi: 10.3901/JME.2009.12.007

    GU H T, LIN Y, HU Z Q, et al. Design optimization method for underwater glider wings based on surrogate model[J]. Journal of Mechanical Engineering, 2009, 45(12): 7-14. doi: 10.3901/JME.2009.12.007
    [3]
    张博, 张宇文, 李文哲, 等. 超空泡航行体前部线型对空泡生成速度影响实验研究[J]. 西北工业大学学报, 2008(5): 540-544. doi: 10.3969/j.issn.1000-2758.2008.05.003

    ZHANG B, ZHANG Y W, LI W Z, et al. Experimental study on the influence of forebody profile of supercavitating vehicle on cavitation generation speed[J]. Journal of Northwestern Polytechnical University, 2008(5): 540-544. doi: 10.3969/j.issn.1000-2758.2008.05.003
    [4]
    张博, 张宇文, 孙致月, 等. 超空化航行体前部外径对空泡影响的研究[J]. 西北工业大学学报, 2010, 28(6): 834-839. doi: 10.3969/j.issn.1000-2758.2010.06.006

    ZHANG B, ZHANG Y W, SUN Z Y, et al. Study on the influence of forebody diameter of supercavitating vehicle on cavitation characteristics[J]. Journal of Northwestern Polytechnical University, 2010, 28(6): 834-839. doi: 10.3969/j.issn.1000-2758.2010.06.006
    [5]
    郑帮涛. 航行体头型对气泡附着影响的数值研究[J]. 船舶力学, 2015, 19(7): 757-764. doi: 10.3969/j.issn.1007-7294.2015.07.001

    ZHENG B T. Numerical study on the influence of vehicle nose shape on bubble attachment[J]. Journal of Ship Mechanics, 2015, 19(7): 757-764. doi: 10.3969/j.issn.1007-7294.2015.07.001
    [6]
    SUN C, SONG B, WANG P. Parametric geometric model and shape optimization of an underwater glider with blended-wing-body[J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7(6): 995-1006. doi: 10.1515/ijnaoe-2015-0069
    [7]
    侯东伯, 王聪, 夏维学, 等. 弹性尾缘对超空泡航行体空泡形态与压力脉动特性影响的水洞试验研究[J]. 兵工学报, 2020, 41(3): 534-541. doi: 10.3969/j.issn.1000-1093.2020.03.014
    [8]
    MUHAMMAD Y J, MARK O, et al. Effect of wing form on the hudrodynamic characteristics and dynamic stability of an underwater glider[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9: 382-389. doi: 10.1016/j.ijnaoe.2016.09.010
    [9]
    戴鹏. 基于参数化的三体组合式自主水下航行器多目标优化设计研究[D]. 广州: 华南理工大学, 2020.
    [10]
    赵远辉, 李宝仁, 高磊. 水下滑翔机水动力外形优化配置[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(3): 505-508, 513.
    [11]
    ZHENG G C, YANG X L. Studies of the resistance optimization of underwater vehicle based on multiple-speed approximate model[J]. MATEC Web of Conferences, 2019, 272(1): 10-29.
    [12]
    姜宜辰, 赵月, 熊济时, 等. 水下航行器艇体形状对阻力及流噪声综合影响[J]. 哈尔滨工程大学学报, 2022, 43(1): 76-82, 138. doi: 10.11990/jheu.202008038
    [13]
    张帅. 长航程水下滑翔机的减阻技术研究[D]. 天津: 天津大学, 2017.
    [14]
    李鹏, 国瑀, 秦洪德, 等. 海底对无人水下航行器水动力性能的影响[J]. 船舶工程, 2022, 44(4): 146-153.
    [15]
    邹磊, 田威, 林源, 等. 基于不同湍流模型的螺旋桨水动力特性研究[J]. 船舶工程, 2023, 45(12): 94-100, 114.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article Views(52) PDF Downloads(15) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return