• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
CAI Tingting, YU Sunze, ZHAO Mei. Ship Radiated Noise Line Spectrum Enhancement Based on Adaptive Filtering-Deep Learning Fusion[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0040
Citation: CAI Tingting, YU Sunze, ZHAO Mei. Ship Radiated Noise Line Spectrum Enhancement Based on Adaptive Filtering-Deep Learning Fusion[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0040

Ship Radiated Noise Line Spectrum Enhancement Based on Adaptive Filtering-Deep Learning Fusion

doi: 10.11993/j.issn.2096-3920.2025-0040
  • Received Date: 2025-03-03
  • Accepted Date: 2025-03-24
  • Rev Recd Date: 2025-03-17
  • Available Online: 2025-07-14
  • To address the challenge of identifying line spectrum features of ship radiated noise in complex underwater acoustic environments, a line spectrum enhancement model combining adaptive filtering and deep learning (DL) is proposed. This model integrates a double-layer collaborative adaptive filtering module with a deep learning module to form a multi-level feature enhancement framework. The adaptive filtering module combines frequency-domain adaptive filtering(FDAF) with the maximum correntropy criterion (MCC) to enhance the suppression of non-stationary noise while effectively reducing broadband background noise. The deep learning module employs a bidirectional long short-term memory (BiLSTM) to extract the local temporal dependencies of line spectra. It also incorporates an attention residual mechanism to focus on weak line spectra and utilizes a Transformer encoder to capture long-range correlations in the time-frequency domain. The model effectively combines the advantages of filtering and deep learning, both suppressing noise and enhancing the detection of weak spectral lines. Simulation results demonstrate that the proposed method outperforms single adaptive filtering or deep learning models in terms of overall line spectrum enhancement and weak line spectrum enhancement. The effectiveness of this method is further validated through lake test data.

     

  • loading
  • [1]
    AINSLIE M A. Principles of sonar performance modeling[M]. Berlin: Springer, 2010.
    [2]
    唐冰钊. 基于熵和模态分解的舰船辐射噪声特征提取方法研究[D]. 西安: 西安理工大学, 2025.
    [3]
    WIDROW B, GLOVER J R, MCCOOL J M, et al. Adaptive noise cancelling: Principles and applications[J]. Proceedings of the IEEE, 1975, 63(12): 1692-1716. doi: 10.1109/PROC.1975.10036
    [4]
    刘辉涛, 丛卫华, 潘翔. 窄带弱信号的线谱检测——相干累加频域批处理自适应线谱增强方法[J]. 浙江大学学报(工学版), 2007(12): 2048-2051.

    LIU H T, CONG W H, PAN X. Line spectral detection of tone weak signal-an adaptive line enhancement technique using coherent addition and frequency domain batch[J]. Journal of Zhejiang University(Engineering Science), 2007(12): 2048-2051.
    [5]
    HAO Y, CHI C, LIANG G. Sparsity-driven adaptive enhancement of underwater acoustic tonals for passive sonars[J]. The Journal of the Acoustical Society of America, 2020, 147(4): 2192-2204. doi: 10.1121/10.0001017
    [6]
    罗斌, 王茂法, 王世闯. 一种高效的弱目标线谱检测算法[J]. 声学技术, 2017, 36(2): 171-176.

    LUO B, WANG M F, WANG S C. A highly efficient weak target line-spectrum detection algorithm[J]. Technical Acoustics, 2017, 36(2): 171-176.
    [7]
    HAO Q, ZHANG X, WANG Y, et al. A novel rail defect detection method based on undecimated lifting wavelet packet transform and shannon entropy-improved adaptive line enhancer[J]. Journal of Sound and Vibration, 2018, 425: 208-220. doi: 10.1016/j.jsv.2018.04.003
    [8]
    王燕, 上官佩熙, 郝宇, 等. 非高斯噪声背景下的目标辐射线谱自适应增强方法[J]. 声学学报, 2024, 49(5): 927-938. doi: 10.12395/0371-0025.2023040

    WANG Y, SHANGGUAN P X, HAO Y, et al. Adaptive enhancer of the target radiated line-spectrum under non-Gaussian noise[J]. Acta Acustica, 2024, 49(5): 927-938. doi: 10.12395/0371-0025.2023040
    [9]
    张奇, 笪良龙, 王超, 等. 基于深度学习的水声被动目标识别研究综述[J]. 电子与信息学报, 2023, 45(11): 4190-4202.

    ZHANG Q, DA L L, WANG C, et al. An overview on underwater acoustic passive target recognition based on deep learning[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4190-4202.
    [10]
    李悦, 马晓川, 王磊, 等. 非高斯环境下的深度学习脉冲信号去噪与重构[J]. 应用声学, 2021(1): 131-141. doi: 10.11684/j.issn.1000-310X.2021.01.015

    LI Y, MA X C, WANG L, et al. Using deep learning to de-noise and reconstruct pulse signals in non-Gaussian environment[J]. Journal of Applied Acoustics, 2021(1): 131-141. doi: 10.11684/j.issn.1000-310X.2021.01.015
    [11]
    JU D, CHI C, LI Z, et al. Deep-learning-based line enhancer for passive sonar systems[J]. IET Radar, Sonar & Navigation, 2022, 16(3): 589-601.
    [12]
    杨路飞, 章新华, 吴秉坤. 基于长短时记忆网络的被动声纳目标信号LOFAR谱增强研究[J]. 电声技术, 2020, 44(6): 101-103.

    YANG L F, ZHANG X H, WU B K. A study on signal LOFAR spectrum enhancement of passive sonar target based on short and short time memory network[J]. Audio Engineering, 2020, 44(6): 101-103.
    [13]
    古天龙, 张清智, 李晶晶. 基于时-频注意力机制网络的水声目标线谱增强[J]. 电子与信息学报, 2024, 46(1): 92-100.

    GU T L, ZHANG Q Z, LI J J. Line spectrum enhancement of underwater acoustic targets based on a time-frequency attention network[J]. Journal of Electronics & Information Technology, 2024, 46(1): 92-100.
    [14]
    HE T, FENG S, YANG J, et al. Underwater acoustic signal LOFAR spectrogram denoising based on enhanced simulation[J]. Applied Sciences, 2024, 14(23): 10931. doi: 10.3390/app142310931
    [15]
    LEI L, SHAO S, LIANG L. An evolutionary deep learning model based on EWKM, random forest algorithm, SSA and BiLSTM for building energy consumption prediction[J]. Energy, 2024, 288: 129795. doi: 10.1016/j.energy.2023.129795
    [16]
    SHERSTINSKY A. Fundamentals of recurrent neural network(RNN) and long short-term memory(LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306. doi: 10.1016/j.physd.2019.132306
    [17]
    WANG Y, QIU S, HU G, et al. Suppressing short time marine ambient noise based on deep complex unet to enhance the vessel radiation signal in LOFAR spectrogram[J]. Journal of Applied Geophysics, 2025, 233: 105611. doi: 10.1016/j.jappgeo.2024.105611
    [18]
    焦晨光, 张小波. 一种改进的基于结构相似性的非局部均值图像去噪算法[J]. 智能计算机与应用, 2025(2): 17-23.

    JIAO C G, ZHANG X B. Based on structural similarity improved non-local means image denoising algorithm[J]. Intelligent Computer and Applications, 2025(2): 17-23.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article Views(15) PDF Downloads(3) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return