Citation: | CAI Tingting, YU Sunze, ZHAO Mei. Ship Radiated Noise Line Spectrum Enhancement Based on Adaptive Filtering-Deep Learning Fusion[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0040 |
[1] |
AINSLIE M A. Principles of sonar performance modeling[M]. Berlin: Springer, 2010.
|
[2] |
唐冰钊. 基于熵和模态分解的舰船辐射噪声特征提取方法研究[D]. 西安: 西安理工大学, 2025.
|
[3] |
WIDROW B, GLOVER J R, MCCOOL J M, et al. Adaptive noise cancelling: Principles and applications[J]. Proceedings of the IEEE, 1975, 63(12): 1692-1716. doi: 10.1109/PROC.1975.10036
|
[4] |
刘辉涛, 丛卫华, 潘翔. 窄带弱信号的线谱检测——相干累加频域批处理自适应线谱增强方法[J]. 浙江大学学报(工学版), 2007(12): 2048-2051.
LIU H T, CONG W H, PAN X. Line spectral detection of tone weak signal-an adaptive line enhancement technique using coherent addition and frequency domain batch[J]. Journal of Zhejiang University(Engineering Science), 2007(12): 2048-2051.
|
[5] |
HAO Y, CHI C, LIANG G. Sparsity-driven adaptive enhancement of underwater acoustic tonals for passive sonars[J]. The Journal of the Acoustical Society of America, 2020, 147(4): 2192-2204. doi: 10.1121/10.0001017
|
[6] |
罗斌, 王茂法, 王世闯. 一种高效的弱目标线谱检测算法[J]. 声学技术, 2017, 36(2): 171-176.
LUO B, WANG M F, WANG S C. A highly efficient weak target line-spectrum detection algorithm[J]. Technical Acoustics, 2017, 36(2): 171-176.
|
[7] |
HAO Q, ZHANG X, WANG Y, et al. A novel rail defect detection method based on undecimated lifting wavelet packet transform and shannon entropy-improved adaptive line enhancer[J]. Journal of Sound and Vibration, 2018, 425: 208-220. doi: 10.1016/j.jsv.2018.04.003
|
[8] |
王燕, 上官佩熙, 郝宇, 等. 非高斯噪声背景下的目标辐射线谱自适应增强方法[J]. 声学学报, 2024, 49(5): 927-938. doi: 10.12395/0371-0025.2023040
WANG Y, SHANGGUAN P X, HAO Y, et al. Adaptive enhancer of the target radiated line-spectrum under non-Gaussian noise[J]. Acta Acustica, 2024, 49(5): 927-938. doi: 10.12395/0371-0025.2023040
|
[9] |
张奇, 笪良龙, 王超, 等. 基于深度学习的水声被动目标识别研究综述[J]. 电子与信息学报, 2023, 45(11): 4190-4202.
ZHANG Q, DA L L, WANG C, et al. An overview on underwater acoustic passive target recognition based on deep learning[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4190-4202.
|
[10] |
李悦, 马晓川, 王磊, 等. 非高斯环境下的深度学习脉冲信号去噪与重构[J]. 应用声学, 2021(1): 131-141. doi: 10.11684/j.issn.1000-310X.2021.01.015
LI Y, MA X C, WANG L, et al. Using deep learning to de-noise and reconstruct pulse signals in non-Gaussian environment[J]. Journal of Applied Acoustics, 2021(1): 131-141. doi: 10.11684/j.issn.1000-310X.2021.01.015
|
[11] |
JU D, CHI C, LI Z, et al. Deep-learning-based line enhancer for passive sonar systems[J]. IET Radar, Sonar & Navigation, 2022, 16(3): 589-601.
|
[12] |
杨路飞, 章新华, 吴秉坤. 基于长短时记忆网络的被动声纳目标信号LOFAR谱增强研究[J]. 电声技术, 2020, 44(6): 101-103.
YANG L F, ZHANG X H, WU B K. A study on signal LOFAR spectrum enhancement of passive sonar target based on short and short time memory network[J]. Audio Engineering, 2020, 44(6): 101-103.
|
[13] |
古天龙, 张清智, 李晶晶. 基于时-频注意力机制网络的水声目标线谱增强[J]. 电子与信息学报, 2024, 46(1): 92-100.
GU T L, ZHANG Q Z, LI J J. Line spectrum enhancement of underwater acoustic targets based on a time-frequency attention network[J]. Journal of Electronics & Information Technology, 2024, 46(1): 92-100.
|
[14] |
HE T, FENG S, YANG J, et al. Underwater acoustic signal LOFAR spectrogram denoising based on enhanced simulation[J]. Applied Sciences, 2024, 14(23): 10931. doi: 10.3390/app142310931
|
[15] |
LEI L, SHAO S, LIANG L. An evolutionary deep learning model based on EWKM, random forest algorithm, SSA and BiLSTM for building energy consumption prediction[J]. Energy, 2024, 288: 129795. doi: 10.1016/j.energy.2023.129795
|
[16] |
SHERSTINSKY A. Fundamentals of recurrent neural network(RNN) and long short-term memory(LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306. doi: 10.1016/j.physd.2019.132306
|
[17] |
WANG Y, QIU S, HU G, et al. Suppressing short time marine ambient noise based on deep complex unet to enhance the vessel radiation signal in LOFAR spectrogram[J]. Journal of Applied Geophysics, 2025, 233: 105611. doi: 10.1016/j.jappgeo.2024.105611
|
[18] |
焦晨光, 张小波. 一种改进的基于结构相似性的非局部均值图像去噪算法[J]. 智能计算机与应用, 2025(2): 17-23.
JIAO C G, ZHANG X B. Based on structural similarity improved non-local means image denoising algorithm[J]. Intelligent Computer and Applications, 2025(2): 17-23.
|