• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
DUAN Luo-bao, WANG Jing, PAN Yang. Reduced-order flux observers with strong stator-resistance robustness for speed sensorless induction motor drives[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0038
Citation: DUAN Luo-bao, WANG Jing, PAN Yang. Reduced-order flux observers with strong stator-resistance robustness for speed sensorless induction motor drives[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0038

Reduced-order flux observers with strong stator-resistance robustness for speed sensorless induction motor drives

doi: 10.11993/j.issn.2096-3920.2025-0038
  • Received Date: 2025-03-02
  • Accepted Date: 2025-05-28
  • Rev Recd Date: 2025-05-26
  • Available Online: 2025-07-24
  • The sensorless control technology of induction motors has become an important technical means in modern industrial automation, robot control, and electric vehicle drive fields due to its many advantages such as reducing system cost and volume, optimizing hardware structure, high reliability, and easy maintenance. However, despite the excellent performance of sensorless technology for induction motors in many aspects, there are still some key issues in low-speed regenerating region. Firstly, the system may experience instability issues during low-speed operation. Moreover, the low-speed control performance of the system is susceptible to variations in stator resistance. In response to these issues, this paper proposes an optimized design of the gain for the reduced-order flux observer, achieving enhanced stability in low-speed generating regions and strong robustness against stator resistance variations without the need for additional stator resistance adaptation or online identification processes. In order to fully verify the effectiveness and universality of the proposed method, experiments were conducted across the entire low-speed range under different motor power levels and stator resistance error conditions. The experimental results demonstrate that the optimized reduced-order flux observer exhibits excellent stability and stator resistance robustness in the entire low-speed region, and the system control performance has been significantly improved.

     

  • loading
  • [1]
    ODHANO S A, PESCETTO P, AWAN H A A, et al. Parameter identification and self-commissioning in ac motor drives: A technology status review[j]. ieee transactions on power electronics, 2019, 34(4): 3603-3614.
    [2]
    ZERDALI E, BARUT M. The comparisons of optimized extended kalman filters for speed-sensorless control of induction motors[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4340-4351. doi: 10.1109/TIE.2017.2674579
    [3]
    MONTERO E R, VOGELSBERGER M, WOLBANK T. Sensorless saliency-based control of dual induction machines under dynamic load imbalances using three current sensors[J]. IEEE Transactions on Industrial Electronics, 2023, 70(12): 12093-12101. doi: 10.1109/TIE.2023.3241394
    [4]
    HOLTZ J. Sensorless control of induction machines—with or without signal injection[J]. IEEE Transactions on Industrial Electronics, 2006, 53(1): 7-30. doi: 10.1109/TIE.2005.862324
    [5]
    GAO Q, ASHER G, SUMNER M. Sensorless position and speed control of induction motors using high-frequency injection and without offline precommissioning[J]. IEEE Transactions on Industrial Electronics, 2007, 54(5): 2474-2481. doi: 10.1109/TIE.2007.900364
    [6]
    METWALY M K, ELKALASHY N I, ZAKY M S, et al. Slotting saliency extraction for sensorless torque control of standard induction machines[J]. IEEE Transactions on Energy Conversion, 2018, 33(1): 68-77. doi: 10.1109/TEC.2017.2726998
    [7]
    ORLOWSKA-KOWALSKA T, KORZONEK M, TARCHALA G. Stability improvement methods of the adaptive full-order observer for sensorless induction motor drive—comparative study[J]. IEEE Transactions on Industrial Informatics, 2019, 15(11): 6114-6126. doi: 10.1109/TII.2019.2930465
    [8]
    AMBROZIC V , DAVID NEDELJKOVIĆ, NASTRAN J. Sensorless control of induction machine with parameter adaptation[C]//Proceedings of the IEEE International Symposium on Industrial Electronics, Bled, Slovenia: IEEE, 1999.
    [9]
    SANGWONGWANICH S, NITTAYATAREEKUL U, MAGYAR P. Direct speed estimation based on back EMF of induction motors-Its equivalent MRAS representation and stability analysis[C]//EPE2003, Toulouse, France: IEEE, 2003.
    [10]
    HINKKANEN M , HARNEFORS L , LUOMI J. Reduced-order flux observers with stator-resistance adaptation for speed-sensorless induction motor drives[J]. IEEE Transactions on Power Electronics, 2010, 25(5): 1173-1183.
    [11]
    TARCHALA G, ORLOWSKA-KOWALSKA T. Equivalent-signal-based sliding mode speed mras-type estimator for induction motor drive stable in the regenerating mode[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 6936-6947. doi: 10.1109/TIE.2018.2795518
    [12]
    MOAVENI B, MASOUMI Z, RAHMANI P. Introducing improved iterated extended kalman filter (IIEKF) to estimate the rotor rotational speed, rotor and stator resistances of induction motors[J]. IEEE Access, 2023, 11: 17584-17593. doi: 10.1109/ACCESS.2023.3244830
    [13]
    TIR Z, ORLOWSKA-KOWALSKA T, Ahmed H, et al. Adaptive high gain observer based MRAS for sensorless induction motor drives[J]. IEEE Transactions on Industrial Electronics, 2024, 71(1): 271-281. doi: 10.1109/TIE.2023.3243271
    [14]
    MAKSOUD H A, SHAABAN S M, ZAKY M S, et al. Performance and stability improvement of AFO for sensorless IM drives in low speeds regenerating mode[J]. IEEE Transactions on Power Electronics, 2019, 34(8): 7812-7825. doi: 10.1109/TPEL.2018.2879759
    [15]
    WANG T, WANG B, YU Y, et al. High-order sliding-mode observer with adaptive gain for sensorless induction motor drives in the wide-speed range[J]. IEEE Transactions on Industrial Electronics, 2023, 70(11): 11055-11066. doi: 10.1109/TIE.2022.3227272
    [16]
    李筱筠, 杨淑英, 曹朋朋, 等. 低速运行时异步驱动转速自适应观测器稳定性分析与设计[J]. 电工技术学报, 2018, 33(23): 5391-5401.

    LI X Y, YANG S Y, CAO P P, et al. Stability analysis and design of asynchronous drive speed adaptive observer during low-speed operation[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5391-5401
    [17]
    LI R, YANG K, LUO C, et al. Phase compensation factor-based low frequency crossing for sensorless induction motor drives with changing loads[J]. IEEE Transactions on Power Electronics, 2023, 38(9): 10680-10691. doi: 10.1109/TPEL.2023.3280486
    [18]
    SUN W, YU Y, WANG G, et al. Design method of adaptive full order observer with or without estimated flux error in speed estimation algorithm[J]. IEEE Transactions on Power Electronics, 2016, 31(3): 2609-2626. doi: 10.1109/TPEL.2015.2440373
    [19]
    CHEN J, HUANG J, SUN Y. Resistances and speed estimation in sensorless induction motor drives using a model with known regressors[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 2659-2667. doi: 10.1109/TIE.2018.2849964
    [20]
    SAEJIA M, SANGWONGWANICH S. Averaging analysis approach for stability analysis of speed-sensorless induction motor drives with stator resistance estimation[J]. IEEE Transactions on Industrial Electronics, 2006, 53(1): 162-177. doi: 10.1109/TIE.2005.862301
    [21]
    SUN W, GAO J, YU Y, et al. Robustness improvement of speed estimation in speed-sensorless induction motor drives[J]. IEEE Transactions on Industry Applications, 2016, 52(3): 2525-2536. doi: 10.1109/TIA.2015.2512531
    [22]
    LUO C, LI R, YANG K, et al. Graphical multiple-error feedback matrix design for stability and robustness enhancement of speed-sensorless induction motor drives[J]. IEEE Transactions on Industrial Electronics, 2023, 70(4): 3537-3548. doi: 10.1109/TIE.2022.3176269
    [23]
    SUN W, WANG Z, XU D, et al. Robust stability improvement for speed sensorless induction motor drive at low speed range by virtual voltage injection[J]. IEEE Transactions on Industrial Electronics, 2020, 67(4): 2642-2654. doi: 10.1109/TIE.2019.2910039
    [24]
    NURETTIN A, İNANÇ N. Sensorless vector control for induction motor drive at very low and zero speeds based on an adaptive-gain super-twisting sliding mode observer[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(4): 4332-4339. doi: 10.1109/JESTPE.2023.3265352
    [25]
    LIU H. Sensorless control with adaptive speed observer using power winding information for dual-stator winding induction starter/generator[J]. IEEE Transactions on Industrial Electronics, 2024, 71(2): 1388-1398. doi: 10.1109/TIE.2023.3253965
    [26]
    Chen J, Yang G, Yuan X, et al. Experimental validation of a minimum-order sensorless induction motor control method[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2024, 12(4): 3715-3728. doi: 10.1109/JESTPE.2024.3404227
    [27]
    SLEMON G R. Modelling of induction machines for electric drives[J]. IEEE Transactions on Industry Applications, 1989, 25(6): 1126-1131. doi: 10.1109/28.44251
    [28]
    BOLDEA I, PAICU M C, ANDREESCU G D. Active flux concept for motion-sensorless unified AC drives[J]. IEEE Transactions on Power Electronics, 2008, 23(5): 2612-2618. doi: 10.1109/TPEL.2008.2002394
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article Views(5) PDF Downloads(0) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return