• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Volume 33 Issue 3
Jun  2025
Turn off MathJax
Article Contents
GUO Dongjun, WANG Xuyang. Stability Constraints of ROV-Coordinated Hole Drilling on Shipwrecks[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 504-510, 526. doi: 10.11993/j.issn.2096-3920.2025-0037
Citation: GUO Dongjun, WANG Xuyang. Stability Constraints of ROV-Coordinated Hole Drilling on Shipwrecks[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 504-510, 526. doi: 10.11993/j.issn.2096-3920.2025-0037

Stability Constraints of ROV-Coordinated Hole Drilling on Shipwrecks

doi: 10.11993/j.issn.2096-3920.2025-0037
  • Received Date: 2025-02-28
  • Accepted Date: 2025-05-09
  • Rev Recd Date: 2025-05-08
  • Available Online: 2025-05-22
  • Remotely operated vehicle(ROV)-coordinated hole drilling on shipwrecks is a key technical component for achieving underwater drilling and oil extraction integration. Currently, research on this control scenario in the engineering field is limited, and effective methods for stabilizing the pose of ROV-coordinated hole drilling on shipwrecks are lacking. This paper addressed the pose stability requirements during the ROV-coordinated hole drilling process on a shipwreck. By drawing parallels with the stability principles of ground-based equipment, a stability criterion for ROV-coordinated hole drilling on shipwrecks was established. Based on this criterion, a thrust correction algorithm was proposed. By modifying the thrust of each thruster, the force state of the collaborative system met the stability criterion, thereby achieving the stability constraints for the collaborative system’s pose. Simulation results show that the proposed stability constraint method can effectively maintain the pose stability of the collaborative system during the operation. In terms of stability, compared with the pre-correction state, the collaborative system transitions from an unstable constraint state to a stable constraint state, fully verifying the effectiveness and feasibility of the stability constraint method proposed in this study.

     

  • loading
  • [1]
    孙久文, 蒋治, 胡俊彦. 中国海洋经济高质量发展的时空演进与驱动因素[J]. 地理学报, 2024, 79(12): 3110-3128. doi: 10.11821/dlxb202412012

    SUN J W, JIANG Z, HU J Y. Spatio-temporal evolution and driving factors of high-quality marine economic development in China[J]. Acta Geographica Sinica, 2024, 79(12): 3110-3128 doi: 10.11821/dlxb202412012
    [2]
    焦震衡, 韩民路, 朱起煌, 等. 2002年国内外石油经济十大新闻[J]. 国际石油经济, 2003(1): 5-15.
    [3]
    张洪林, 徐志成, 孙继刚. “运鸿”轮水下抽油, 整体打捞工程[C]//救捞专业委员会2002年学术交流会论文集. 宁波: 中国航海学会, 2002.
    [4]
    范杰. “翔舟”轮救助打捞工程——艉段抢捞项目[C]//第十届中国国际救捞论坛. 杭州: 中国航海学会, 2018.
    [5]
    赵崴, 王利锋, 牛生丽, 等. 基于多源遥感数据的“交响乐”轮溢油污染监测[J]. 海洋学报, 2024, 46(9): 109-119. doi: 10.12284/hyxb2024106

    ZHAO W, WANG L F, NIU S L, et al. Multi-remote sensing of spilled oils from a Symphony tanker collision in the Yellow Sea[J]. Acta Oceanologica Sinica, 2024, 46(9): 109-119. doi: 10.12284/hyxb2024106
    [6]
    Tabakina I. Moskito to recover oil from sunken wrecks[J]. Maritime Reporter and Engineering News, 2015(3): 10.
    [7]
    李智刚, 张银亮, 冯迎宾, 等. ROV和潜水员联合辅助处理深水沉船溢油事故的方法研究[J]. 环境工程, 2013, 31(S1): 54-57.

    LI Z G, ZHANG Y L, FENG Y B, et al. Study on ways to deal with oil spill accident of deepwater ship by combination of ROV and diver[J]. Environmental Engineering, 2013, 31(S1): 54-57.
    [8]
    宁伟婷, 邹云飞, 周家海. 水下钻孔抽油一体化装备的发展前景[J]. 中国水运(下半月), 2014, 14(10): 149-150.
    [9]
    DU S, CHEN B, LEI Y. Force control of swirling sucker for underwater concrete drilling robot[C]//2021 China Automation Congress. Beijing, China: CAC, 2021: 5341-5346.
    [10]
    刘伟, 张增猛, 孙坐福, 等. 沉船水下开孔抽油技术的研究现状[J]. 船舶工程, 2017, 39(S1): 235-239.
    [11]
    吴冰. 水下钻孔机器人运动控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
    [12]
    PAPADOPOULOS E G, REY D A. A new measure of tipover stability margin for mobile manipulators[J]. Proceedings of IEEE International Conference on Robotics and Automation, 1996(4): 3111-3116.
    [13]
    MCGHEE R B, FRANK A A. On the stability properties of quadruped creeping gaits[J]. Mathematical Biosciences, 1968, 3: 331-351. doi: 10.1016/0025-5564(68)90090-4
    [14]
    霍星星, 葛彤, 王旭阳. 基于模糊补偿的深海作业级远程操控潜水器自适应位姿控制[J]. 上海交通大学学报, 2017, 51(4): 403-409.

    HUO X X, GE T, WANG X Y. Adaptive position and attitude control for deep sea work-class remotely operated underwater vehicle based on fuzzy compensation[J]. Journal of Shanghai Jiaotong University, 2017, 51(4): 403-409.
    [15]
    武少波, 冯晓东, 杨文涛. 一种船舶清洗ROV姿态控制方法研究与实现[J]. 电子测量技术, 2022, 45(12): 12-19.

    WU S B, FENG X D, YANG W T. Research and implementation of attitude control method for underwater ship hull cleaning ROV[J]. Electronic Measurement Technology, 2022, 45(12): 12-19.
    [16]
    CHENG T, LIN W X, LI W L. PID Control of double-loop speed control system based on bacteria-particle swarm hybrid optimization algorithm[J]. Applied Mechanics and Materials, 2012, 241-244: 1850-1854. doi: 10.4028/www.scientific.net/AMM.241-244.1850
    [17]
    王旭阳. 类人机器人非规则运动规划与抗干扰控制研究[D]. 上海: 上海交通大学, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article Views(40) PDF Downloads(11) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return