• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
XU Haining, WANG Yong, JING Qiang, DING Tongzhen, YU Fei, SHEN Qingye, CAO Shengzhe. The 3D Reconstruction Method of Submarine Cables Based on High-Speed ROV Cruising with Multibeam Sonar[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0036
Citation: XU Haining, WANG Yong, JING Qiang, DING Tongzhen, YU Fei, SHEN Qingye, CAO Shengzhe. The 3D Reconstruction Method of Submarine Cables Based on High-Speed ROV Cruising with Multibeam Sonar[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0036

The 3D Reconstruction Method of Submarine Cables Based on High-Speed ROV Cruising with Multibeam Sonar

doi: 10.11993/j.issn.2096-3920.2025-0036
  • Received Date: 2025-02-28
  • Accepted Date: 2025-04-16
  • Rev Recd Date: 2025-04-01
  • Available Online: 2025-05-23
  • Submarine cables, serving as the critical conduits for power transmission in offshore wind farms, are pivotal to the system's stability. However, due to their complex environments, three-dimensional (3D) reconstruction technology for these cables has become a key method for their inspection and maintenance. Currently, conventional 3D reconstruction methods for submarine cables are costly and less effective in deep-sea environments. Therefore, this paper proposes a 3D reconstruction method for submarine cables based on high-speed Remotely Operated Vehicle (ROV) cruising with sonar, drawing on the concept of synthetic aperture and simplifying calculations through spatial carving. This method comprehensively processes the multiple sonar observation information obtained during the ROV cruising to collectively reflect the spatial occupancy. In the simulation experiments of submarine cable 3D reconstruction, a comparison with mainstream methods was conducted. It is evident that the proposed method not only reduces the cost of submarine cable reconstruction by using conventional multibeam sonar but also achieves higher reconstruction accuracy, demonstrating significant application value and promotion potential.

     

  • loading
  • [1]
    JIE W, YAO T F. Study on safety monitoring system for submarine power cable on the basis of AIS and radar technology[J]. Physics Procedia, 2012, 24(24): 961-965.
    [2]
    李晶. 海底电缆外部探测方法与应用浅析[J]. 水道港口, 2018, 39(3): 365-369. doi: 10.3969/j.issn.1005-8443.2018.03.021

    LI J. Analysis on method and application of submarine cable detection[J]. Journal of Waterway and Harbor, 2018, 39(3): 365-369. doi: 10.3969/j.issn.1005-8443.2018.03.021
    [3]
    罗深荣. 侧扫声纳和多波束测深系统在海洋调查中的综合应用[J]. 海洋测绘, 2003(1): 22-24. doi: 10.3969/j.issn.1671-3044.2003.01.006

    LUO S R. comprehensive utilization of side scan sonar and multi-beam sounding system in oceanographic research[J]. Hydrographic Surveying and Charting, 2003(1): 22-24. doi: 10.3969/j.issn.1671-3044.2003.01.006
    [4]
    毕继鑫, 吴文超, 占晓明. 多波束测深系统检测海底电缆及数据处理方法研究[J]. 海洋测绘, 2022, 42(2): 17-21. doi: 10.3969/j.issn.1671-3044.2022.02.004

    BI J X, WU W C, ZHAN X M. Research on the submarine cable detection by multi-beam systemand data processing method[J]. Hydrographic Surveying and Charting, 2022, 42(2): 17-21. doi: 10.3969/j.issn.1671-3044.2022.02.004
    [5]
    张建兴, 宋永东, 栾振东, 等. 声学探测技术在海底管道外检测中的应用[J]. 广西科学, 2020, 27(3): 217-224,327.

    ZHANG J X, SONG Y D, LUAN Z D, et al. Application of acoustic detection technology in the external detection of submarine pipeline[J]. Guangxi Sciences, 2020, 27(3): 217-224,327.
    [6]
    刘哲. 基于水下三维点云的管道检测定位算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
    [7]
    ARAÚJO FILHO L E S, CRESTANI G P, JÚNIOR C L N, et al. 3D reconstruction of a small dam using a profiling sonar and an UUV[C]//2022 IEEE International Systems Conference(SysCon), Montreal, QC, Canada: IEEE, 2022: 1-7.
    [8]
    MAURELL I P, SANTOS M M, OLIVEIRA E, et al. Volume change estimation of underwater structures using 2-D sonar data[J]. IEEE Sensors Journal, 2022, 22(23): 23380-23392. doi: 10.1109/JSEN.2022.3213780
    [9]
    赵阳. 合成孔径声纳系统在海底掩埋电缆探测中的应用研究[J]. 科技资讯, 2021, 19(10): 68-70.

    ZHAO Y. The application and researchs of synthetic aperture sonar system in submarine buried cable detection[J]. Science & Technology Information, 2021, 19(10): 68-70.
    [10]
    JEFF S. Doppler velocity log navigation for observation-class ROVs[J]. Sea Technology: Worldwide Information Leader for Marine Business, Science & Engineering, 2010, 51(12): 27-30.
    [11]
    ZHAO L, ZHOU M, LOOSE B, et al. Modifying an affordable ROV for under-ice sensing[C]//OCEANS 2021, San Diego, CA, USA: OCEANS, 2021: 1-5.
    [12]
    牛泽民. 基于磁信号引导的水下机器人海缆自动跟踪技术研究[D]. 武汉: 华中科技大学, 2016.
    [13]
    齐晓迪. 基于水深数据约束下的声呐图像海底地形恢复方法分析[J]. 工程技术研究, 2020, 5(21): 238-240. doi: 10.3969/j.issn.1671-3818.2020.21.109
    [14]
    HAYES M P, GOUGH P T. Synthetic aperture sonar: A review of current status[J]. IEEE Journal of Oceanic Engineering, 2009, 34(3): 207-224. doi: 10.1109/JOE.2009.2020853
    [15]
    WANG J K, CHEN F F, HUANG Y J, et al. Virtual maps for autonomous exploration of cluttered underwater environments[J]. IEEE Journal of Oceanic Engineering, 2022, 47(4): 916-935. doi: 10.1109/JOE.2022.3153897
    [16]
    毛留磊. 基于DSP的多波束合成孔径声呐实时成像技术[D]. 哈尔滨: 哈尔滨工程大学, 2023.
    [17]
    AYKIN M D , NEGAHDARIPOUR S. Three-dimensional target reconstruction from multiple 2-D forward-scan sonar views by space carving[J]. IEEE Journal of Oceanic Engineering, 2017, 42(3): 574-589.
    [18]
    ZHANG M M, CHOI W S, HERMAN J, et al. DAVE aquatic virtual environment: Toward a general underwater robotics simulator[C]//IEEE/OES Autonomous Underwater Vehicle(AUV) Symposium, Singapore: IEEE, 2022: 1-8.
    [19]
    CHOI W, OLSON D R, DAVIS D, et al. Physics-based modelling and simulation of multibeam echosounder perception for autonomous underwater manipulation[J]. Frontiers in Robotics and AI, 2021, 8: 706646. doi: 10.3389/frobt.2021.706646
    [20]
    KUTULAKOS K N, SEITZ S M . A theory of shape by space carving[C]//Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece: ICCV, 1999: 307-314 .
    [21]
    AYKIN M D, NEGAHDARIPOUR S. Forward-look 2-D sonar image formation and 3-D reconstruction[C]//2013 OCEANS - San DiegoSan, Diego, CA, USA: OCEANS, 2013: 1-10.
    [22]
    宋家美. 多视角声纳图像的目标重建[D]. 哈尔滨: 哈尔滨工程大学, 2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article Views(34) PDF Downloads(0) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return