
| Citation: | XU Haining, WANG Yong, JING Qiang, DING Tongzhen, YU Fei, SHEN Qingye, CAO Shengzhe. Three-Dimensional Reconstruction Method of Submarine Cables Based on High-Speed ROV Cruising with Multibeam Imaging Sonar[J]. Journal of Unmanned Undersea Systems, 2025, 33(5): 891-897. doi: 10.11993/j.issn.2096-3920.2025-0036 |
| [1] |
JIE W, YAO T F. Study on safety monitoring system for submarine power cable on the basis of AIS and radar technology[J]. Physics Procedia, 2012, 24: 961-965.
|
| [2] |
李晶. 海底电缆外部探测方法与应用浅析[J]. 水道港口, 2018, 39(3): 365-369. doi: 10.3969/j.issn.1005-8443.2018.03.021
LI J. Analysis on method and application of submarine cable detection[J]. Journal of Waterway and Harbor, 2018, 39(3): 365-369. doi: 10.3969/j.issn.1005-8443.2018.03.021
|
| [3] |
罗深荣. 侧扫声纳和多波束测深系统在海洋调查中的综合应用[J]. 海洋测绘, 2003(1): 22-24. doi: 10.3969/j.issn.1671-3044.2003.01.006
LUO S R. Comprehensive utilization of side scan sonar and multi-beam sounding system in oceanographic research[J]. Hydrographic Surveying and Charting, 2003(1): 22-24. doi: 10.3969/j.issn.1671-3044.2003.01.006
|
| [4] |
毕继鑫, 吴文超, 占晓明. 多波束测深系统检测海底电缆及数据处理方法研究[J]. 海洋测绘, 2022, 42(2): 17-21. doi: 10.3969/j.issn.1671-3044.2022.02.004
BI J X, WU W C, ZHAN X M. Research on the submarine cable detection by multi-beam systemand data processing method[J]. Hydrographic Surveying and Charting, 2022, 42(2): 17-21. doi: 10.3969/j.issn.1671-3044.2022.02.004
|
| [5] |
张建兴, 宋永东, 栾振东, 等. 声学探测技术在海底管道外检测中的应用[J]. 广西科学, 2020, 27(3): 217-224,327.
ZHANG J X, SONG Y D, LUAN Z D, et al. Application of acoustic detection technology in the external detection of submarine pipeline[J]. Guangxi Sciences, 2020, 27(3): 217-224, 327.
|
| [6] |
刘哲. 基于水下三维点云的管道检测定位算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
|
| [7] |
ARAÚJO FILHO L E S, CRESTANI G P, JÚNIOR C L N, et al. 3D reconstruction of a small dam using a profiling sonar and an UUV[C]//2022 IEEE International Systems Conference. Montreal, QC, Canada: IEEE, 2022: 1-7.
|
| [8] |
MAURELL I P, SANTOS M M, OLIVEIRA E, et al. Volume change estimation of underwater structures using 2-D sonar data[J]. IEEE Sensors Journal, 2022, 22(23): 23380-23392. doi: 10.1109/JSEN.2022.3213780
|
| [9] |
赵阳. 合成孔径声纳系统在海底掩埋电缆探测中的应用研究[J]. 科技资讯, 2021, 19(10): 68-70.
ZHAO Y. The application and researchs of synthetic aperture sonar system in submarine buried cable detection[J]. Science & Technology Information, 2021, 19(10): 68-70.
|
| [10] |
ZHAO L, ZHOU M, LOOSE B, et al. Modifying an affordable ROV for under-ice sensing[C]//OCEANS 2021. San Diego, CA, USA: OCEANS, 2021: 1-5.
|
| [11] |
SNYDER J. Doppler velocity log navigation for observation-class ROVs[J]. Sea Technology: Worldwide Information Leader for Marine Business, Science & Engineering, 2010, 51(12): 27-30.
|
| [12] |
牛泽民. 基于磁信号引导的水下机器人海缆自动跟踪技术研究[D]. 武汉: 华中科技大学, 2016.
|
| [13] |
齐晓迪. 基于水深数据约束下的声呐图像海底地形恢复方法分析[J]. 工程技术研究, 2020, 5(21): 238-240. doi: 10.3969/j.issn.1671-3818.2020.21.109
|
| [14] |
HAYES M P, GOUGH P T. Synthetic aperture sonar: A review of current status[J]. IEEE Journal of Oceanic Engineering, 2009, 34(3): 207-224. doi: 10.1109/JOE.2009.2020853
|
| [15] |
WANG J K, CHEN F F, HUANG Y J, et al. Virtual maps for autonomous exploration of cluttered underwater environments[J]. IEEE Journal of Oceanic Engineering, 2022, 47(4): 916-935. doi: 10.1109/JOE.2022.3153897
|
| [16] |
KUTULAKOS K N, SEITZ S M . A theory of shape by space carving[C]//Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece: ICCV, 1999: 307-314 .
|
| [17] |
AYKIN M D, NEGAHDARIPOUR S. Forward-look 2-D sonar image formation and 3-D reconstruction[C]//2013 OCEANS-San Diego. San Diego, CA, USA: OCEANS, 2013: 1-10.
|
| [18] |
宋家美. 多视角声纳图像的目标重建[D]. 哈尔滨: 哈尔滨工程大学, 2021.
|
| [19] |
毛留磊. 基于DSP的多波束合成孔径声呐实时成像技术[D]. 哈尔滨: 哈尔滨工程大学, 2023.
|
| [20] |
AYKIN M D , NEGAHDARIPOUR S. Three-dimensional target reconstruction from multiple 2-D forward-scan sonar views by space carving[J]. IEEE Journal of Oceanic Engineering, 2017, 42(3): 574-589.
|
| [21] |
ZHANG M M, CHOI W S, HERMAN J, et al. DAVE aquatic virtual environment: Toward a general underwater robotics simulator[C]//IEEE/OES Autonomous Underwater Vehicle(AUV) Symposium. Singapore: IEEE, 2022: 1-8.
|
| [22] |
CHOI W, OLSON D R, DAVIS D, et al. Physics-based modelling and simulation of multibeam echosounder perception for autonomous underwater manipulation[J]. Frontiers in Robotics and AI, 2021, 8: 706646. doi: 10.3389/frobt.2021.706646
|