• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Volume 33 Issue 3
Jun  2025
Turn off MathJax
Article Contents
LIU Xiaohan, ZHAO Chenhao, NIE Haomiao, XIANG Feng, LI Chenguang, ZHAO Min. ARV Nonlinear Disturbance Estimation Based on Extended State Observer[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 433-440. doi: 10.11993/j.issn.2096-3920.2025-0035
Citation: LIU Xiaohan, ZHAO Chenhao, NIE Haomiao, XIANG Feng, LI Chenguang, ZHAO Min. ARV Nonlinear Disturbance Estimation Based on Extended State Observer[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 433-440. doi: 10.11993/j.issn.2096-3920.2025-0035

ARV Nonlinear Disturbance Estimation Based on Extended State Observer

doi: 10.11993/j.issn.2096-3920.2025-0035
  • Received Date: 2025-02-27
  • Accepted Date: 2025-04-14
  • Rev Recd Date: 2025-03-28
  • Available Online: 2025-05-22
  • Autonomous/remotely-operated vehicles(ARVs) are susceptible to complex flow field disturbances during underwater path tracking missions, where traditional linear observers exhibit suboptimal performance in addressing flow field-induced nonlinear disturbances. This paper proposed a dynamic high-gain extended observer method to resolve the nonlinear disturbance estimation challenge for the “Siyuan” ARV. Firstly, a nonlinear kinematic and dynamic model of the ARV was established, with external disturbance data acquired through sea trial path tracking experiments. Secondly, a dynamic gain compensation mechanism was introduced to address nonlinear system observation, effectively overcoming limitations in conventional methods such as the difficulty in determining Lipschitz function coefficient and empirical dependence in parameter tuning. The convergence of dynamic gains was rigorously ensured through the incorporation of performance constraint parameters. To validate the proposed method, comparative simulation experiments were conducted against traditional Luenberger observers. Results demonstrate that the developed observer achieves superior convergence speed and steady-state accuracy in estimating disturbance forces, disturbance moments, surge velocity, heave velocity, and yaw angular velocity. This advancement significantly enhances state tracking capability under complex disturbances.

     

  • loading
  • [1]
    周吉祥, 刘慧敏, 陆凯, 等. 深海ARV在海洋资源调查中的应用及展望[J]. 海洋地质前沿, 2024, 40(2): 93-102.

    ZHOU J X, LIU H M, LU K, et al. Application and prospect of deep-sea ARV in mineral resource investigation[J]. Marine Geology Frontiers, 2024, 40(2): 93-102.
    [2]
    王磊, 刘涛, 杨申申, 等. 深海潜水器ARV关键技术[J]. 火力与指挥控制, 2010, 35(11): 6-8. doi: 10.3969/j.issn.1002-0640.2010.11.002

    WANG L, LIU T, YANG S S, et al. Key techniques of deep-sea submersible ARV[J]. Fire Control & Command Control, 2010, 35(11): 6-8. doi: 10.3969/j.issn.1002-0640.2010.11.002
    [3]
    AVILA J P J, DONHA D C, ADAMOWSKI J C. Experimental model identification of open-frame underwater vehicles[J]. Ocean Engineering, 2013, 60: 81-94. doi: 10.1016/j.oceaneng.2012.10.007
    [4]
    XU S J, MA Q W, HAN D F. Experimental study on inertial hydrodynamic behaviors of a complex remotely operated vehicle[J]. European Journal of Mechanics-B/Fluids, 2017, 65: 1-9. doi: 10.1016/j.euromechflu.2017.01.013
    [5]
    GU N, WANG D, PENG Z, et al. Disturbance observers and extended state observers for marine vehicles: A survey[J]. Control Engineering Practice, 2022, 123: 105158. doi: 10.1016/j.conengprac.2022.105158
    [6]
    KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35-45. doi: 10.1115/1.3662552
    [7]
    LUENBERGER D. Observers for multivariable systems[J]. IEEE Transactions on Automatic Control, 1966, 11(2): 190-197. doi: 10.1109/TAC.1966.1098323
    [8]
    KHALIL H K, PRALY L. High-gain observers in nonlinear feedback control[J]. International Journal of Robust and Nonlinear Control, 2014, 24(6): 993-1015. doi: 10.1002/rnc.3051
    [9]
    YOUNG K D, UTKIN V I, OZGUNER U. A control engineer’s guide to sliding mode control[J]. IEEE Transactions on Control Systems Technology, 1999, 7(3): 328-342. doi: 10.1109/87.761053
    [10]
    SHEN Y, XIA X. Semi-global finite-time observers for nonlinear systems[J]. Automatica, 2008, 44(12): 3152-3156. doi: 10.1016/j.automatica.2008.05.015
    [11]
    WOLFF T M, LOPEZ V G, MÜLLER M A. Robust data-driven moving horizon estimation for linear discrete-time systems[J]. IEEE Transactions on Automatic Control, 2024, 69(8): 5598-5604. doi: 10.1109/TAC.2024.3371373
    [12]
    AHMED-ALI T, KARAFYLLIS I, LAMNABHI-LAGARRIGUE F. Global exponential sampled-data observers for nonlinear systems with delayed measurements[J]. Systems & Control Letters, 2013, 62(7): 539-549.
    [13]
    ZHOU H, ZUO Y, TONG S. Observer-based fuzzy event-triggered consensus fault-tolerant control for nonlinear multiagent systems under switching topologies[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(8): 4660-4670. doi: 10.1109/TFUZZ.2024.3409447
    [14]
    LI X, ZHAO M, GE T. A nonlinear observer for remotely operated vehicles with cable effect in ocean currents[J]. Applied Sciences, 2018, 8(6): 867. doi: 10.3390/app8060867
    [15]
    吴云凯, 胡大海, 朱志宇, 等. 基于自适应阈值与扩张状态滑模观测器的AUV执行机构故障检测与估计[J]. 控制理论与应用, 2023, 40(7): 1216-1223. doi: 10.7641/CTA.2023.20430

    WU Y K, HU D H, ZHU Z Y, et al. Adaptive threshold and extended state sliding mode observer based actuator fault detection and estimation for AUV[J]. Control Theory & Applications, 2023, 40(7): 1216-1223. doi: 10.7641/CTA.2023.20430
    [16]
    王浩亮, 柴亚星, 王丹, 等. 基于事件触发机制的多自主水下航行器协同路径跟踪控制[J]. 自动化学报, 2024, 50(5): 1024-1034.

    WANG H L, CHAI Y X, WANG D, et al. Event-triggered cooperative path following of multiple autonomous underwater vehicles[J]. Acta Automatica Sinica, 2024, 50(5): 1024-1034.
    [17]
    KANG S, RONG Y, CHOU W. Antidisturbance control for AUV trajectory tracking based on fuzzy adaptive extended state observer[J]. Sensors, 2020, 20(24): 7084. doi: 10.3390/s20247084
    [18]
    DING N, TANG Y, JIANG Z, et al. Station-keeping control of autonomous and remotely-operated vehicles for free floating manipulation[J]. Journal of Marine Science and Engineering, 2021, 9(11): 1305. doi: 10.3390/jmse9111305
    [19]
    FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. Norway: John Wiley & Sons, 2011.
    [20]
    LEI H, LIN W. Universal adaptive control of nonlinear systems with unknown growth rate by output feedback[J]. Automatica, 2006, 42(10): 1783-1789. doi: 10.1016/j.automatica.2006.05.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article Views(29) PDF Downloads(9) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return