
| Citation: | HOU Yuli, WANG Ning, QIU Chidong, WENG Yongpeng. A Review of Research on Path Planning of Unmanned Surface Vessel Swarm: Deep Reinforcement Learning[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 194-203. doi: 10.11993/j.issn.2096-3920.2025-0034 |
| [1] |
孙峰. 一种基于海空无人集群的自杀式无人艇防御策略[J]. 水下无人系统学报, 2024, 32(2): 267-274, 319.
SUN F. Defense strategy for suicide unmanned surface vessels based on sea and air unmanned clusters[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 267-274, 319.
|
| [2] |
翁磊, 杨扬, 钟雨轩. 多无人艇协同遍历路径规划算法[J]. 水下无人系统学报, 2020, 28(6): 634-641.
WENG L, YANG Y, ZHONG Y X. Collaborative traversal path planning algorithm of for multiple unmanned survey vessels[J]. Journal of Unmanned Undersea Systems, 2020, 28(6): 634-641.
|
| [3] |
王宁, 刘永金, 高颖. 未知扰动下的无人艇编队优化轨迹跟踪控制[J]. 中国舰船研究, 2024, 19(1): 178-190.
WANG N, LIU Y J, GAO Y. Optimal trajectory tracking control of unmanned surface vehicle formation under unknown disturbances[J]. Chinese Journal of Ship Research, 2024, 19(1): 178-190.
|
| [4] |
王秀玲, 尹勇, 赵延杰, 等. 无人艇海上搜救路径规划技术综述[J]. 船舶工程, 2023, 45(4): 50-57.
WANG X L, YIN Y, ZHAO Y J, et al. Overview of USV maritime search and rescue path planning technology[J]. Ship Engineering, 2023, 45(4): 50-57.
|
| [5] |
焦宇航, 王宁. 欠驱动无人船集群有限时间跟踪控制[J]. 中国舰船研究, 2023, 18(6): 76-87.
JIAO Y H, WANG N. Finite-time trajectory tracking control of underactuated surface vehicles swarm[J]. Chinese Journal of Ship Research, 2023, 18(6): 76-87.
|
| [6] |
WANG N, HE H, HOU Y, et al. Model-free visual servo swarming of manned-unmanned surface vehicles with visibility maintenance and collision avoidance[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(1): 697-709. doi: 10.1109/TITS.2023.3310430
|
| [7] |
WANG N, LIU Y, LIU J, et al. Reinforcement learning swarm of self-organizing unmanned surface vehicles with unavailable dynamics[J]. Ocean Engineering, 2023, 289: 116313. doi: 10.1016/j.oceaneng.2023.116313
|
| [8] |
NIU Y, MU Y, ZHANG K, et al. Path planning and search effectiveness of USV based on underwater target scattering model[J]. Journal of Physics: Conference Series, 2023, 2478(10): 102035.
|
| [9] |
MA Y, ZHAO Y, LI Z, et al. CCIBA*: An improved BA* based collaborative coverage path planning method for multiple unmanned surface mapping vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19578-88. doi: 10.1109/TITS.2022.3170322
|
| [10] |
XUE K, HUANG Z, WANG P, et al. An exact algorithm for task allocation of multiple unmanned surface vehicles with minimum task time[J]. Journal of Marine Science and Engineering, 2021, 9(8): 907. doi: 10.3390/jmse9080907
|
| [11] |
刘祥, 叶晓明, 王泉斌, 等. 无人水面艇局部路径规划算法研究综述[J]. 中国舰船研究, 2021, 16(z1): 1-10.
LIU X, YE X M, WANG Q B, et al. Review on the research of local path planning algorithms for unmanned surface vehicles[J]. Chinese Journal of Ship Research, 2021, 16(z1): 1-10.
|
| [12] |
LIN X, LIU Y. Research on multi-USV cooperative search method[C]//2019 IEEE International Conference on Mechatronics and Automation. Tianjin, China: IEEE, 2019.
|
| [13] |
徐善文, 曾庆化, 李方东, 等. 无人集群系统协同导航资源及算法综述[J]. 导航与控制, 2024, 23(5): 25-37.
XU S W, ZENG Q H, LI F D, et al. A review of cooperative navigation resources and algorithms for unmanned swarm systems[J]. Navigation and Control, 2024, 23(5): 25-37.
|
| [14] |
WANG H, FU Z, ZHOU J, et al. Cooperative collision avoidance for unmanned surface vehicles based on improved genetic algorithm[J]. Ocean Engineering, 2021, 222: 108612. doi: 10.1016/j.oceaneng.2021.108612
|
| [15] |
ZHAO L, BAI Y, PAIK J K. Global path planning and waypoint following for heterogeneous unmanned surface vehicles assisting inland water monitoring[J]. Journal of Ocean Engineering and Science, 2023, 10(1): 88-108.
|
| [16] |
MENG X, SUN B, ZHU D. Harbour protection: Moving invasion target interception for multi-AUV based on prediction planning interception method[J]. Ocean Engineering, 2021, 219: 108268. doi: 10.1016/j.oceaneng.2020.108268
|
| [17] |
GAN W, QU X, SONG D, et al. Multi-USV cooperative chasing strategy based on obstacles assistance and deep reinforcement learning[J]. IEEE Transactions on Automation Science and Engineering, 2023, 21(4): 5895-910.
|
| [18] |
YAN X, JIANG D, MIAO R, et al. Formation control and obstacle avoidance algorithm of a multi-USV system based on virtual structure and artificial potential field[J]. Journal of Marine Science and Engineering, 2021, 9(2): 161. doi: 10.3390/jmse9020161
|
| [19] |
欧阳子路, 王鸿东, 黄一, 等. 基于改进RRT算法的无人艇编队路径规划技术[J]. 中国舰船研究, 2020, 15(3): 18-24.
OUYANG Z L, WANG H D, HUANG Y, et al. Path planning technologies for USV formation based on improved RRT[J]. Chinese Journal of Ship Research, 2020, 15(3): 18-24.
|
| [20] |
LI Y, ZHANG J, LI Y, et al. Research on the frame of formation of multi-USV[C]//2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing(WCMEIM). Ma’anshan, China: IEEE, 2022: 746-749.
|
| [21] |
SANG T, XIAO J, XIONG J, et al. Path planning method of unmanned surface vehicles formation based on improved A* algorithm[J]. Journal of Marine Science and Engineering, 2023, 11(1): 176. doi: 10.3390/jmse11010176
|
| [22] |
宋利飞, 徐凯凯, 史晓骞, 等. 多无人艇协同围捕智能逃跑目标方法研究[J]. 中国舰船研究, 2023, 18(1): 52-59.
SONG L F, XU K K, SHI X Q, et al. Multiple USV cooperative algorithm method for hunting intelligent escaped targets[J]. Chinese Journal of Ship Research, 2023, 18(1): 52-59.
|
| [23] |
SANG H, YOU Y, SUN X, et al. The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations[J]. Ocean Engineering, 2021, 223: 108709. doi: 10.1016/j.oceaneng.2021.108709
|
| [24] |
YU J, CHEN Z, ZHAO Z, et al. A traversal multi-target path planning method for multi-unmanned surface vessels in space-varying ocean current[J]. Ocean Engineering, 2023, 278: 114423. doi: 10.1016/j.oceaneng.2023.114423
|
| [25] |
SHARMA A, SHOVAL S, SHARMA A, et al. Path planning for multiple targets interception by the swarm of UAVs based on swarm intelligence algorithms: A review[J]. IETE Technical Review, 2022, 39(3): 675-697. doi: 10.1080/02564602.2021.1894250
|
| [26] |
NAZARAHARI M, KHANMIRZA E, DOOSTIE S. Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm[J]. Expert Systems with Applications, 2019, 115: 106-120. doi: 10.1016/j.eswa.2018.08.008
|
| [27] |
LUO Q, YAN X, WU D, et al. Unmanned surface vehicle cooperative task assignment based on genetic algorithm[C]//2022 Global Reliability and Prognostics and Health Management. Yantai, China: IEEE, 2022: 1-5.
|
| [28] |
YAO P, WU K, LOU Y. Path planning for multiple unmanned surface vehicles using Glasius bio-inspired neural network with Hungarian algorithm[J]. IEEE Systems Journal, 2022, 17(3): 3906-17.
|
| [29] |
TANG F. Coverage path planning of unmanned surface vehicle based on improved biological inspired neural network[J]. Ocean Engineering, 2023, 278: 114354. doi: 10.1016/j.oceaneng.2023.114354
|
| [30] |
ZHAI H, WANG W, ZHANG W, et al. Path planning algorithms for USVs via deep reinforcement learning[C]//2021 China Automation Congress. Beijing, China: IEEE, 2021: 4281-86.
|
| [31] |
YANG C, ZHAO Y, CAI X, et al. Path planning algorithm for unmanned surface vessel based on multi-objective reinforcement learning[J]. Computational Intelligence and Neuroscience, 2023, 2023(1): 2146314. doi: 10.1155/2023/2146314
|
| [32] |
CHEN C, CHEN X Q, MA F, et al. A knowledge-free path planning approach for smart ships based on reinforcement learning[J]. Ocean Engineering, 2019, 189: 106299. doi: 10.1016/j.oceaneng.2019.106299
|
| [33] |
ZHAO Y, MA Y, HU S. USV formation and path-following control via deep reinforcement learning with random braking[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(12): 5468-78. doi: 10.1109/TNNLS.2021.3068762
|
| [34] |
LUIS S Y, REINA D G, MARÍN S L T. A multiagent deep reinforcement learning approach for path planning in autonomous surface vehicles: The Ypacaraí lake patrolling case[J]. IEEE Access, 2021, 9: 17084-99. doi: 10.1109/ACCESS.2021.3053348
|
| [35] |
彭周华, 吴文涛, 王丹, 等. 多无人艇集群协同控制研究进展与未来趋势[J]. 中国舰船研究, 2021, 16(1): 51-64.
PENG Z H, WU W T, WANG D, et al. Coordinated control of multiple unmanned surface vehicles: Recent advances and future trends[J]. Chinese Journal of Ship Research, 2021, 16(1): 51-64.
|
| [36] |
LIU Y, CHEN C, QU D, et al. Multi-USV system antidisturbance cooperative searching based on the reinforcement learning method[J]. IEEE Journal of Oceanic Engineering, 2023, 48(4): 1019-47. doi: 10.1109/JOE.2023.3281630
|
| [37] |
ZHANG J, REN J, CUI Y, et al. Multi-USV task planning method based on improved deep reinforcement learning[J]. IEEE Internet of Things Journal, 2024, 11(10): 18549-67. doi: 10.1109/JIOT.2024.3363044
|
| [38] |
LI Y, LI X, WEI X, et al. Sim-real joint experimental verification for an unmanned surface vehicle formation strategy based on multi-agent deterministic policy gradient and line of sight guidance[J]. Ocean Engineering, 2023, 270: 113661. doi: 10.1016/j.oceaneng.2023.113661
|
| [39] |
WANG C C, WANG Y L, HAN Q L, et al. Multi-USV cooperative formation control via deep reinforcement learning with deceleration[EB/OL]. [2024-12-06]. https://ieeexplore.ieee.org/document/10621696.
|
| [40] |
WANG C, WANG Y, SHI P, et al. Scalable-MADDPG-based cooperative target invasion for a multi-USV system[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 35(12): 17867-77.
|
| [41] |
WEI X, WANG H, TANG Y. Deep hierarchical reinforcement learning based formation planning for multiple unmanned surface vehicles with experimental results[J]. Ocean Engineering, 2023, 286: 115577. doi: 10.1016/j.oceaneng.2023.115577
|
| [42] |
JIN K, WANG J, WANG H, et al. Soft formation control for unmanned surface vehicles under environmental disturbance using multi-task reinforcement learning[J]. Ocean Engineering, 2022, 260: 112035. doi: 10.1016/j.oceaneng.2022.112035
|
| [43] |
任璐, 柯亚男, 柳文章, 等. 基于优势函数输入扰动的多无人艇协同策略优化方法[J]. 自动化学报, 2024, 51(4): 1-11.
REN L, KE Y N, LIU W Z, et al. Multi-USVs cooperative policy optimization method based on disturbed input of advantage function[J]. Acta Automatica Sinica, 2025, 51(4): 1-11.
|
| [44] |
YAO P, LOU Y, WU K. Cooperative path planning for USVs assembly task[C]//2023 38th Youth Academic Annual Conference of Chinese Association of Automation (YAC). Hefei, China: IEEE, 2023: 526-531.
|
| [45] |
于长东, 刘新阳, 陈聪, 等. 基于多智能体深度强化学习的无人艇集群博弈对抗研究[J]. 水下无人系统学报, 2024, 32(1): 79-86. doi: 10.11993/j.issn.2096-3920.2023-0159
YU C D, LIU X Y, CHEN C, et al. Research on game confrontation of unmanned surface vehicles swarm based on multi-agent deep reinforcement learning[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 79-86. doi: 10.11993/j.issn.2096-3920.2023-0159
|
| [46] |
LI F, YIN M, WANG T, et al. Distributed pursuit-evasion game of limited perception USV swarm based on multiagent proximal policy optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(10): 6435-46. doi: 10.1109/TSMC.2024.3429467
|
| [47] |
XIA J, LUO Y, LIU Z, et al. Cooperative multi-target hunting by unmanned surface vehicles based on multi-agent reinforcement learning[J]. Defence Technology, 2023, 29: 80-94. doi: 10.1016/j.dt.2022.09.014
|
| [48] |
QU X, GAN W, SONG D, et al. Pursuit-evasion game strategy of USV based on deep reinforcement learning in complex multi-obstacle environment[J]. Ocean Engineering, 2023, 273: 114016. doi: 10.1016/j.oceaneng.2023.114016
|
| [49] |
LOWE R, WU Y I, TAMAR A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments [C]//NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: ACM, 2017: 6383-93.
|
| [50] |
REYNOLDS C W. Flocks, herds and schools: A distributed behavioral model[C]//Proceedings of the 14th annual conference on Computer graphics and interactive techniques. [S.l.]: Publication History, 1987: 25-34.
|
| [51] |
WANG Z, JIN X, ZHANG T, et al. Expert system-based multiagent deep deterministic policy gradient for swarm robot decision making[J]. IEEE Transactions on Cybernetics, 2022, 54(3): 1614-24.
|
| [52] |
SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL]. [2025-02-20]. https://arxiv.org/abs/1707.06347.
|
| [53] |
XUE D, WU D, YAMASHITA A S, et al. Proximal policy optimization with reciprocal velocity obstacle based collision avoidance path planning for multi-unmanned surface vehicles[J]. Ocean Engineering, 2023, 273: 114005. doi: 10.1016/j.oceaneng.2023.114005
|