• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Volume 33 Issue 3
Jun  2025
Turn off MathJax
Article Contents
LIU Guoshun, GUO Wei, LAN Yanjun, FU Yifan. A Real-time Motion Planning Algorithm for AUV based on IDVD Method[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 473-483. doi: 10.11993/j.issn.2096-3920.2025-0033
Citation: LIU Guoshun, GUO Wei, LAN Yanjun, FU Yifan. A Real-time Motion Planning Algorithm for AUV based on IDVD Method[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 473-483. doi: 10.11993/j.issn.2096-3920.2025-0033

A Real-time Motion Planning Algorithm for AUV based on IDVD Method

doi: 10.11993/j.issn.2096-3920.2025-0033
  • Received Date: 2025-02-26
  • Accepted Date: 2025-04-17
  • Rev Recd Date: 2025-03-24
  • Available Online: 2025-05-26
  • To enhance the intelligence of autonomous undersea vehicles(AUVs), this paper proposed a real-time motion planning algorithm based on the inverse dynamic virtual domain(IDVD) method, ensuring safe navigation in unknown environments with obstacles. In view of the limited computational resources of AUVs, a hierarchical framework was adopted to guarantee high computational efficiency for real-time planning. First, a safe global path was generated using a path planning algorithm, followed by path optimization within the sensing range of the forward-looking sonar to produce safe and feasible trajectories. Specially, for the kinematic constraints of underactuated AUVs, the hybrid A* algorithm was employed for searching safe paths based on global path search. Subsequently, a nonlinear optimization problem was formulated to enhance path smoothness and safety. The IDVD method was then applied to derive feasible velocity and acceleration trajectories of AUVs, which served as reference inputs to guide the AUVs’ navigation. Simulations and experiments on the “Stingray-II” AUV were conducted. The results validate that the proposed method is capable of efficient online trajectory planning for AUVs in unknown complex environments.

     

  • loading
  • [1]
    GONG Y J, HUANG T, MA Y N, et al. MTrajPlanner: A multiple-trajectory planning algorithm for autonomous underwater vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4): 3714-3727. doi: 10.1109/TITS.2023.3234937
    [2]
    ZENG Z, SAMMUT K, LAMMAS A, et al. Efficient path re-planning for AUV operating in spatiotemporal currents[J]. Journal of Intelligent and Robotic Systems: Theory and Applications, 2015, 79(1): 135-153.
    [3]
    WILLNERS J S, GONZALEZ-ADELL D, HERNÁNDEZ J D, et al. Online 3-dimensional path planning with kinematic constraints in unknown environments using hybrid A* with tree pruning[J]. Sensors, 2021, 21(4): 1-20. doi: 10.1109/JSEN.2021.3049752
    [4]
    HERNÁNDEZ J D, VIDAL E, VALLICROSA G, et al. Online path planning for autonomous underwater vehicles in unknown environments[C]//2015 IEEE International Conference on Robotics and Automation. Seattle, USA: IEEE, 2015: 1152-1157.
    [5]
    YAKIMENKO O A. Direct method for rapid prototyping of near-optimal aircraft trajectories[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(5): 865-875. doi: 10.2514/2.4616
    [6]
    ZHOU B, GAO F, WANG L, et al. Robust and efficient quadrotor trajectory generation for fast autonomous flight[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3529-3536. doi: 10.1109/LRA.2019.2927938
    [7]
    LIU S, WATTERSON M, MOHTA K, et al. Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-D complex environments[J]. IEEE Robotics and Automation Letters, 2017, 2(3): 1688-1695. doi: 10.1109/LRA.2017.2663526
    [8]
    MA D, HAO S, MA W, et al. An optimal control-based path planning method for unmanned surface vehicles in complex environments[J]. Ocean Engineering, 2022, 245: 110532. doi: 10.1016/j.oceaneng.2022.110532
    [9]
    ZHUANG Y, SHARMA S, SUBUDHI B, et al. Efficient collision-free path planning for autonomous underwater vehicles in dynamic environments with a hybrid optimization algorithm[J]. Ocean Engineering, 2016, 127: 190-199. doi: 10.1016/j.oceaneng.2016.09.040
    [10]
    MAHMOUD ZADEH S, POWERS D M W, SAMMUT K, et al. A novel versatile architecture for autonomous underwater vehicle’s motion planning and task assignment[J]. Soft Computing, 2018, 22(5): 1687-1710. doi: 10.1007/s00500-016-2433-2
    [11]
    RICHTER C, BRY A, ROY N. Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments[J]. Springer Tracts in Advanced Robotics, 2016, 114: 649-666.
    [12]
    KARAMAN S, FRAZZOLI E. Incremental sampling-based algorithms for optimal motion planning[J]. Robotics Science and Systems, 2010, 104(2): 267-274.
    [13]
    HERNÁNDEZ J D, MOLL M, VIDAL E, et al. Planning feasible and safe paths online for autonomous underwater vehicles in unknown environments[C]//2016 IEEE International Conference on Intelligent Robots and Systems. Daejeon, Korea(South): IEEE, 2016: 1313-1320.
    [14]
    CARRERAS M, HERNANDEZ J D, VIDAL E, et al. Sparus II AUV-A hovering vehicle for seabed inspection[J]. IEEE Journal of Oceanic Engineering, 2018, 43(2): 344-355. doi: 10.1109/JOE.2018.2792278
    [15]
    USENKO V, VON STUMBERG L, PANGERCIC A, et al. Real-time trajectory replanning for MAVs using uniform B-splines and a 3D circular buffer[C]//2017 IEEE International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada: IEEE, 2017: 215-222.
    [16]
    OLEYNIKOVA H, BURRI M, TAYLOR Z, et al. Continuous-time trajectory optimization for online UAV replanning[C]//2016 IEEE International Conference on Intelligent Robots and Systems. Daejeon, Korea(South): IEEE, 2016: 5332-5339.
    [17]
    ZHOU X, WANG Z, YE H, et al. EGO-Planner: An ESDF-free gradient-based local planner for quadrotors[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 478-485. doi: 10.1109/LRA.2020.3047728
    [18]
    YE H, ZHOU X, WANG Z, et al. TGK-planner: An efficient topology guided kinodynamic planner for autonomous quadrotors[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 494-501. doi: 10.1109/LRA.2020.3047798
    [19]
    SHKEL A M, LUMELSKY V. Classification of the Dubins set[J]. Robotics and Autonomous Systems, 2001, 34(4): 179-202. doi: 10.1016/S0921-8890(00)00127-5
    [20]
    ZHU Z, SCHMERLING E, PAVONE M. A convex optimization approach to smooth trajectories for motion planning with car-like robots[C]// 2015 Proceedings of the IEEE Conference on Decision and Control. Osaka, Japan: IEEE, 2015: 835-842.
    [21]
    BOYARKO G, YAKIMENKO O, ROMANO M. Real-Time 6DoF guidance for of spacecraft proximity maneuvering and close approach with a tumbling object[C]//2010 AIAA/AAS Astrodynamics Specialist Conference. Toronto, Ontario, Canada: AIAA, 2010: 7666.
    [22]
    YAZDANI A M, SAMMUT K, YAKIMENKO O A, et al. IDVD-based trajectory generator for autonomous underwater docking operations[J]. Robotics and Autonomous Systems, 2017, 92: 12-29. doi: 10.1016/j.robot.2017.02.001
    [23]
    COWLING I D, YAKIMENKO O A, WHIDBORNE J F, et al. Direct method based control system for an autonomous quadrotor[J]. Journal of Intelligent and Robotic Systems: Theory and Applications, 2010, 60(2): 285-316.
    [24]
    ALTURBEH H, WHIDBORNE J F. Real-time obstacle collision avoidance for fixed wing aircraft using B-splines[C]//2014 UKACC International Conference on Control. Loughborough, UK: IEEE, 2014: 115-120.
    [25]
    HEAD J D, ZERNER M C. A Broyden-Fletcher-Goldfarb-Shanno optimization procedure for molecular geometries[J]. Chemical Physics Letters, 1985, 122(3): 264-270. doi: 10.1016/0009-2614(85)80574-1
    [26]
    ANDERSSON J A E, GILLIS J, HORN G, et al. CasADi: A software framework for nonlinear optimization and optimal control[J]. Mathematical Programming Computation, 2019, 11(1): 1-36. doi: 10.1007/s12532-018-0139-4
    [27]
    GAN W, SU L, CHU Z. Trajectory planning of autonomous underwater vehicles based on Gauss pseudospectral method[J]. Sensors, 2023, 23(4): 57-71.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article Views(43) PDF Downloads(13) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return