Citation: | LEI Zhenkun, CHEN Mingzhi, ZHU Daqi. A Literature Analysis-Based Study on Advances in Underwater Multi-Robot Pursuit-Evasion Problems[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 484-494. doi: 10.11993/j.issn.2096-3920.2025-0032 |
[1] |
MU Z, PAN J, ZHOU Z, et al. A survey of the pursuit–evasion problem in swarm intelligence[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(8): 1093-1116.
|
[2] |
KANE S A, ZAMANI M. Falcons pursue prey using visual motion cues: New perspectives from animal-borne cameras[J]. Journal of Experimental Biology, 2014, 217(2): 225-234. doi: 10.1242/jeb.092403
|
[3] |
CHAKRABORTY D, BHUNIA S, DE R. Survival chances of a prey swarm: How the cooperative interaction range affects the outcome[J]. Scientific Reports, 2020, 10(1): 8362. doi: 10.1038/s41598-020-64084-3
|
[4] |
ISAACS R. Differential games: A mathematical theory with applications to warfare and pursuit, control and optimization[M]. Gloucester, MA, USA: Courier Corporation, 1999.
|
[5] |
MURRIETA-CID R, TOVAR B, HUTCHINSON S. A sampling-based motion planning approach to maintain visibility of unpredictable targets[J]. Autonomous Robots, 2005, 19: 285-300. doi: 10.1007/s10514-005-4052-0
|
[6] |
BHATTACHARYA S, HUTCHINSON S. On the existence of Nash equilibrium for a two-player pursuit—evasion game with visibility constraints[J]. The International Journal of Robotics Research, 2010, 29(7): 831-839. doi: 10.1177/0278364909354628
|
[7] |
TANG X, YE D, XIAO Y, et al. Epsilon Nash equilibrium differential game strategy for spacecraft terminal pursuit-evasion under incomplete information[J]. Journal of Astronautics, 2024, 45(1): 63-73. doi: 10.3873/j.issn.1000-1328.2024.01.007
|
[8] |
PACHTER M, D’AZZO J J, PROUD A W. Tight formation flight control[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 246-254. doi: 10.2514/2.4735
|
[9] |
GARCIA E, CASBEER D W, PACHTER M. Design and analysis of state-feedback optimal strategies for the differential game of active defense[J]. IEEE Transactions on Automatic Control, 2018, 64(2): 553-568.
|
[10] |
JIA J, WANG W. Review of reinforcement learning research[C]//2020 35th Youth Academic Annual Conference of Chinese Association of Automation(YAC). Zhanjiang, China: IEEE, 2020: 186-191.
|
[11] |
KAELBLING L P, LITTMAN M L, MOORE A W. Reinforcement learning: A survey[J]. Journal of Artificial Intelligence Research, 1996, 4: 237-285. doi: 10.1613/jair.301
|
[12] |
SUTTON R S, BARTO A G. Reinforcement learning: An introduction[M]. Cambridge, MA, USA: MIT Press, 2018.
|
[13] |
WANG Y K, WANG Y, CUI R X, et al. Game of marine robots: USV pursuit evasion game using online reinforcement learning[C]//2023 IEEE International Conference on Development and Learning(ICDL). Macau, China: IEEE, 2023: 121-126.
|
[14] |
LI Z, CHEN S, ZHOU C, et al. Orbital multi-player pursuit-evasion game with deep reinforcement learning[J]. Journal of the Astronautical Sciences, 2025, 72(1): 1-29.
|
[15] |
QI Q, ZHANG X, GUO X. A deep reinforcement learning approach for the pursuit evasion game in the presence of obstacles[C]//2020 IEEE International Conference on Real-time Computing and Robotics(RCAR). Asahikawa, Japan: IEEE, 2020: 68-73.
|
[16] |
ZHANG R, ZONG Q, ZHANG X, et al. Game of drones: Multi-UAV pursuit-evasion game with online motion planning by deep reinforcement learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34(10): 7900-7909.
|
[17] |
ZHUANG H, GAO P, WU X, et al. Coordination and control in multiagent systems for enhanced pursuit-evasion game performance[J]. Dynamic Games and Applications, 2024: 1-22.
|
[18] |
MORARI M, LEE J H. Model predictive control: Past, present and future[J]. Computers & Chemical Engineering, 1999, 23(4-5): 667-682.
|
[19] |
GARCIA C E, PRETT D M, MORARI M. Model predictive control: Theory and practice—a survey[J]. Automatica, 1989, 25(3): 335-348. doi: 10.1016/0005-1098(89)90002-2
|
[20] |
HUANG D, ZHANG M, ZHAN T, et al. Insensitive mechanism-based nonlinear model predictive guidance for UAVs intercepting maneuvering targets with input constraints[J]. Drones, 2024, 8(11): 608. doi: 10.3390/drones8110608
|
[21] |
QIU T, ZHANG H, WANG J. Nash pursuit strategy for nonzero-sum MPC game via inverse optimal control[C]//2022 13th Asian Control Conference(ASCC). Jeju, Korea: IEEE, 2022: 2354-2359.
|
[22] |
HU P, ZHAO C, PAN Q. A novel method for a pursuit-evasion game based on fuzzy Q-learning and model-predictive control[J]. Drones, 2024, 8(9): 509. doi: 10.3390/drones8090509
|
[23] |
CUI J, LI D, LIU P, et al. Game-model prediction hybrid path planning algorithm for multiple mobile robots in pursuit evasion game[C]//2021 IEEE International Conference on Unmanned Systems(ICUS). Beijing, China: IEEE, 2021: 925-930.
|
[24] |
GISCH D, RIBANDO J M. Apollonius’ problem: A study of solutions and their connections[J]. American Journal of Undergraduate Research, 2004, 3(1): 15-25.
|
[25] |
COXETER H S M. The problem of Apollonius[J]. The American Mathematical Monthly, 1968, 75(1): 5-15. doi: 10.1080/00029890.1968.11970941
|
[26] |
RAMANA M V, KOTHARI M. Pursuit-evasion games of high speed evader[J]. Journal of Intelligent & Robotic Systems, 2017, 85: 293-306.
|
[27] |
DOROTHY M, MAITY D, SHISHIKA D, et al. One Apollonius circle is enough for many pursuit-evasion games[J]. Automatic, 2024, 163: 111587.
|
[28] |
WANG Q, WU K Q, YE J F, et al. Apollonius partitions based pursuit-evasion game strategies by Q-learning approach[C]//2022 41st Chinese Control Conference(CCC). Hefei, China: IEEE, 2022: 4843-4848.
|
[29] |
AL-TALABI A A. Fuzzy reinforcement learning algorithm for the pursuit-evasion differential games with superior evader[C]//2017 International Automatic Control Conference(CACS). Taiwan, China: IEEE, 2017: 1-6.
|
[30] |
KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Research, 1986, 5(1): 90-98. doi: 10.1177/027836498600500106
|
[31] |
KUMAR P B, RAWAT H, PARHI D R. Path planning of humanoids based on artificial potential field method in unknown environments[J]. Expert Systems, 2019, 36(2): e12360. doi: 10.1111/exsy.12360
|
[32] |
CHEN M, YANG C, ZHANG X, et al. Pursuit-evasion game of multiple pursuers and evaders with intelligent cooperation and obstacle avoidance in a complex environment[C]//Chinese Conference on Swarm Intelligence and Cooperative Control. Singapore: Springer Nature Singapore, 2023: 222-234.
|
[33] |
DONG J, ZHANG X, JIA X. Strategies of pursuit-evasion game based on improved potential field and differential game theory for mobile robots[C]//2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control. Harbin, China: IEEE, 2012: 1452-1456.
|
[34] |
ZHAO F, HUA Y, ZHENG H, et al. Cooperative target pursuit by multiple fixed-wing UAVs based on deep reinforcement learning and artificial potential field[C]//2023 42nd Chinese Control Conference(CCC). Tianjin, China: IEEE, 2023: 5693-5698.
|
[35] |
ZHOU Z, LIU J, YU J. A survey of underwater multi-robot systems[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 9(1): 1-18.
|
[36] |
SUN Z, SUN H, LI P, et al. Pursuit-evasion problem of unmanned surface vehicles in a complex marine environment[J]. Applied Sciences, 2022, 12(18): 9120. doi: 10.3390/app12189120
|
[37] |
YUH J, WEST M. Underwater robotics[J]. Advanced Robotics, 2001, 15(5): 609-639. doi: 10.1163/156855301317033595
|
[38] |
BOGUE R. Underwater robots: A review of technologies and applications[J]. Industrial Robot: An International Journal, 2015, 42(3): 186-191. doi: 10.1108/IR-01-2015-0010
|
[39] |
BOVIO E, CECCHI D, BARALLI F. Autonomous underwater vehicles for scientific and naval operations[J]. Annual Reviews in Control, 2006, 30(2): 117-130. doi: 10.1016/j.arcontrol.2006.08.003
|
[40] |
SUN X, SUN B, SU Z. Cooperative pursuit-evasion game for multi-AUVs in the ocean current and obstacle environment[C]//International Conference on Intelligent Robotics and Applications. Singapore: Springer Nature Singapore, 2023: 201-213.
|
[41] |
CHU Z, WANG F, LEI T, et al. Path planning based on deep reinforcement learning for autonomous underwater vehicles under ocean current disturbance[J]. IEEE Transactions on Intelligent Vehicles, 2022, 8(1): 108-120.
|
[42] |
YANG Y, XIAO Y, LI T. A survey of autonomous underwater vehicle formation: Performance, formation control, and communication capability[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 815-841.
|
[43] |
DANIELIS P, PARZYJEGLA H, ALI M A M, et al. Simulation model for energy consumption and acoustic underwater communication of autonomous underwater vehicles[J]. WMU Journal of Maritime Affairs, 2022, 21(1): 89-107. doi: 10.1007/s13437-021-00253-z
|
[44] |
KELASIDI E, PETTERSEN K Y, GRAVDAHL J T. Energy efficiency of underwater robots[J]. IFAC-PapersOnLine, 2015, 48(16): 152-159. doi: 10.1016/j.ifacol.2015.10.273
|
[45] |
ZEREIK E, BIBULI M, MIŠKOVIĆ N, et al. Challenges and future trends in marine robotics[J]. Annual Reviews in Control, 2018, 46: 350-368. doi: 10.1016/j.arcontrol.2018.10.002
|
[46] |
LEI Z F, LEI X F, WANG N, et al. Present status and challenges of underwater acoustic target recognition technology: A review[J]. Frontiers in Physics, 2022, 10: 1044890. doi: 10.3389/fphy.2022.1044890
|