• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Volume 33 Issue 3
Jun  2025
Turn off MathJax
Article Contents
SUN Haonan, WANG Lei. Trajectory Tracking Control Method for AUV Planar MotionBased on Three-Level Hierarchical Speed Regulation[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 441-449. doi: 10.11993/j.issn.2096-3920.2025-0029
Citation: SUN Haonan, WANG Lei. Trajectory Tracking Control Method for AUV Planar MotionBased on Three-Level Hierarchical Speed Regulation[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 441-449. doi: 10.11993/j.issn.2096-3920.2025-0029

Trajectory Tracking Control Method for AUV Planar MotionBased on Three-Level Hierarchical Speed Regulation

doi: 10.11993/j.issn.2096-3920.2025-0029
  • Received Date: 2025-02-24
  • Accepted Date: 2025-04-24
  • Rev Recd Date: 2025-04-13
  • Available Online: 2025-05-26
  • Autonomous undersea vehicle(AUV) often encounter the problem of track overshoot when moving underwater. To address this issue, this paper proposed a cooperative control strategy that integrated the adaptive line-of-sight guidance algorithm and the three-level hierarchical speed control architecture. In this study, the distance parameter at the end of the track was introduced into the control decision, and the dynamic allocation of the speed was achieved through a three-level hierarchical control strategy. The simulation results verify the effectiveness of the dynamic speed regulation mechanism based on the three-level hierarchical control strategy. By calculating the distance deviation between the AUV and the end of the expected track section in real time, the controller can actively implement the hierarchical deceleration strategy before the large curvature turning requirement is triggered, thereby effectively suppressing the trajectory offset phenomenon caused by momentum accumulation. Compared with the heading-speed double closed-loop algorithm, under the same trajectory, the overshoot of the method in this paper is reduced by 34.15%, enabling the AUV to still accurately travel along the predetermined trajectory when turning and significantly reducing the trajectory deviation.

     

  • loading
  • [1]
    CHEN W, LIU X L, FENG Z A, et al. Improved line-of-sight nonlinear trajectory tracking control of autonomous underwater vehicle exposed to high variable speed ocean currents[J]. Ocean Engineering, 2023(277): 114149.
    [2]
    DU P Z, YANG W C, CHEN Y, et al. Improved indirect adaptive line-of-sight guidance law for path following of under-actuated AUV subject to big ocean currents[J]. Ocean Engineering, 2023(281): 114729.
    [3]
    陆智强, 庄子昊, 王建辉, 等. 基于LOS+PID的无人船行驶路径跟踪控制[J]. 微型电脑应用, 2024, 40(10): 1-5. doi: 10.3969/j.issn.1007-757X.2024.10.001

    LU Z Q, ZHUANG Z H, WANG J H, et al. Path tracking control of unmanned ship based on LOS+PID[J]. Microcomputer Application, 2024, 40(10): 1-5. doi: 10.3969/j.issn.1007-757X.2024.10.001
    [4]
    DU B, YANG K D, ZHANG W D, et al. Terminal line-of-sight angle-constrained target tracking guidance for unmanned surface vehicles[J]. IEEE Transactions on Vehicular Technology, 2024(73): 12515-12529.
    [5]
    陈世利, 卫民, 李一博, 等. 基于双闭环的矢量推进器的AUV转向控制方法[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(6): 530-534.

    CHEN S L, WEI M, LI Y B, et al. AUV steering control method based on double closed loop vector thruster[J]. Journal of Tianjin University (Natural Science and Engineering Technology), 2014, 47(6): 530-534.
    [6]
    BINGUL Z, GUL K. Intelligent-PID with PD feedforward trajectory tracking control of an autonomous underwater vehicle[J]. Machines, 2023, 11(2): 300.
    [7]
    SAHOO A, DWIVEDY S K, ROBI P S. Adaptive fuzzy PID controller for a compact autonomous underwater vehicle[C]//Global Oceans 2020: Singapore–U.S. Gulf Coast, Biloxi, MS, USA: IEEE, 2020: 1-6.

    SAHOO A, DWIVEDY S K, ROBI P S. Adaptive fuzzy PID controller for a compact autonomous underwater vehicle[C]//Global Oceans 2020: Singapore–U.S. Gulf Coast, Biloxi, MS, USA: IEEE, 2020: 1-6.
    [8]
    史峻侨, 刘程, 郭玮丽, 等. 基于神经动态优化与模型预测控制的欠驱动船舶精确路径跟踪[J]. 中国舰船研究, 2025, 20(1): 1-10.

    SHI J Q, LIU C, GUO W L, et al. Accurate path tracking of underactuated ships based on neural dynamic optimization and model predictive control[J]. Chinese Ship Research, 2025, 20(1): 1-10.
    [9]
    PRESTERO T. Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle[D]. California:University of California at Davis, 2001.
    [10]
    王浩亮, 任恩帅, 卢丽宇, 等. 面向海底管道巡检的AUV三维自适应路径跟踪[J]. 船舶工程, 2024, 46(4): 166-174.

    WANG H L, REN E S, LU L Y, et al. AUV 3D adaptive path tracking for submarine pipeline inspection[J]. Ship Engineering, 2019, 46(4): 166-174.
    [11]
    付少波, 关夏威, 张昊. 基于自抗扰理论的欠驱动AUV无模型自适应路径跟踪控制[J]. 水下无人系统学报, 2024, 32(2): 328-336, 375.

    FU S B, GUAN X W, ZHANG H. Model-free adaptive path tracking control of underactuated AUV based on active disturbance rejection theory[J]. Journal of Unmanned Underwater Systems, 2019, 32(2): 328-336, 375.
    [12]
    毛竞航, 吕海宁, 杨建民, 等. 基于模糊PID的深海采矿机器人路径跟踪控制[J]. 海洋工程, 2021, 39(5): 151-161.

    MAO J H, LÜ H N, YANG J M, et al. Path tracking control of deep-sea mining robot based on fuzzy PID[J]. Ocean Engineering, 2019, 39(5): 151-161.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article Views(29) PDF Downloads(13) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return