• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
LIU Chu, HOU Fei, YANG Zerong, ZHOU Lingxiao, ZHU Xinke. Adaptive Observation Methods for Temperature and Salinity Data Based on the Dolphin Deep-sea Profiling Buoy[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0025
Citation: LIU Chu, HOU Fei, YANG Zerong, ZHOU Lingxiao, ZHU Xinke. Adaptive Observation Methods for Temperature and Salinity Data Based on the Dolphin Deep-sea Profiling Buoy[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0025

Adaptive Observation Methods for Temperature and Salinity Data Based on the Dolphin Deep-sea Profiling Buoy

doi: 10.11993/j.issn.2096-3920.2025-0025
  • Received Date: 2025-02-18
  • Accepted Date: 2025-03-18
  • Rev Recd Date: 2025-03-17
  • Available Online: 2025-07-01
  • During the profiling observation process of deep-sea profiling buoys, appropriate sensor sampling frequency must be implemented to reduce power consumption in data acquisition and transmission due to low-power design requirements. Based on the independently developed "Dolphin" deep-sea profiling buoy, this study establishes an optimized model for temperature-salinity data collection strategy using adaptive genetic algorithm through simulation analysis combining peripheral device power consumption specifications and conductivity, temperature, depth(CTD) profile data from Argo program. Leveraging the strong correlation characteristics between adjacent profile data, the proposed method plans new-round sampling schemes by analyzing historical profile data features, while adaptively adjusting sampling frequency according to data variation trends during acquisition. The simulation analysis based on real-world data demonstrates that the profile data acquired through this observation method exhibits minimal deviation from actual measurements, while significantly reducing the overall power consumption of the profiling buoy compared to the pre-programmed deep-layer observation scheme.

     

  • loading
  • [1]
    王波, 李民, 刘世萱, 等. 海洋资料浮标观测技术应用现状及发展趋势[J]. 仪器仪表学报, 2014, 35(11): 2401-14.

    WANG B, LI M, LIU S X, et al. Current status and trend of ocean data buoy observation technology applications[J]. Chinese Journal of Scientific Instrument, 2014, 35(11): 2401-14.
    [2]
    陈鹿, 潘彬彬, 曹正良, 等. 自动剖面浮标研究现状及展望[J]. 海洋技术学报, 2017, 36(2): 1-9.

    CHEN L, PAN B B, CAO Z L, et al. Research Status and prospects of automatic profiling floats[J]. Journal of Ocean Technology, 2017, 36(2): 1-9.
    [3]
    PU Y, SAMSON G, SHI C, et al. Blackghost: An ultra-low-power all-in-one 28 nm CMOS SoC for Internet-of-Things[C]//2017 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS). Yokohama, Japan: IEEE, 2017: 1-3.
    [4]
    Shafiee N, Tewari S, Calhoun B, et al. Infrastructure circuits for lifetime improvement of ultra-low power IoT devices[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64(9): 2598-610. doi: 10.1109/TCSI.2017.2693181
    [5]
    ZHU W B, ZHANG Y F, YAZDI N. An ultra-low power switch array of temperature and humidity sensors with direct digital output[C]//2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems. Barcelona, Spain: IEEE, 2013: 108-111.
    [6]
    LEE C, KIM S. The sampling period estimation based adaptive sampling algorithm for a self-sustainable disaster monitoring system[C]// 2020 European Conference on Networks and Communications. Dubrovnik, Croatia: IEEE, 2020: 165-169.
    [7]
    CAI W, ZHANG M. Spatiotemporal correlation-based adaptive sampling algorithm for clustered wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2018, 14(8).
    [8]
    FATTOUM M, JELLALI Z, ATALLAH L N. Adaptive sampling approach exploiting spatio-temporal correlation and residual energy in periodic wireless sensor networks[J]. IEEE Access, 2023, 11: 7670-81. doi: 10.1109/ACCESS.2023.3237024
    [9]
    SUN Y, YUAN Y, LI X, et al. An adaptive sampling algorithm for target tracking in underwater wireless sensor networks[J]. IEEE Access, 2018, 6: 68324-36. doi: 10.1109/ACCESS.2018.2879536
    [10]
    ALGABROUN H, HÅKANSSON L. Parametric machine learning-based adaptive sampling algorithm for efficient IoT data collection in environmental monitoring[J]. Journal of Network and Systems Management, 2024, 33: 5.
    [11]
    HEO S, MAYER P, MAGNO M. Predictive energy-aware adaptive sampling with deep reinforcement learning[C]// 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS). Glasgow, UK: IEEE, 2022: 1-4.
    [12]
    GIORDANO M, CORTESI S, MEKIKIS P, et al. Energy-aware adaptive sampling for self-sustainability in resource-constrained IoT devices[C]//In Proceedings of the 11th International Workshop on Energy Harvesting & Energy-Neutral Sensing Systems. New York, USA, 2023: 65-71.
    [13]
    CHEN F, XU S Z, ZHAO Y, et al. An adaptive genetic algorithm of adjusting sensor acquisition frequency[J]. Sensors, 2020, 20: 990. doi: 10.3390/s20040990
    [14]
    SHU T X, XIA M, CHEN J H, et al. An energy efficient adaptive sampling algorithm in a sensor network for automated water quality monitoring[J]. Sensors, 2017, 17: 2551. doi: 10.3390/s17112551
    [15]
    ZHOU H, ZENG Z, LIAN L. Adaptive re-planning of AUVs for environmental sampling missions: A fuzzy decision support system based on multi-objective particle swarm optimization[J]. International Journal of Fuzzy Systems, 2017, 20: 650-671.
    [16]
    KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: past, present, and future[J]. Multimed Tools Appl, 2021, 80: 8091-126. doi: 10.1007/s11042-020-10139-6
    [17]
    ALHIJAWI B, AWAJAN A. Genetic algorithms: theory, genetic operators, solutions, and applications[J]. Evol. Intel, 2024, 17: 1245-56. doi: 10.1007/s12065-023-00822-6
    [18]
    李昆鹏, 刘腾博, 李文莉. 改进自适应遗传算法求解“货到人”拣选系统订单分批问题[J]. 机械工程学报, 2023, 59(4): 308-317. doi: 10.3901/JME.2023.04.308

    LI K P, LIU T B, LI W L. Improved adaptive genetic algorithm for order batching of “part-to-picker” picking system[J]. Journal of Mechanical Engineering, 2023, 59(4): 308-317. doi: 10.3901/JME.2023.04.308
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article Views(18) PDF Downloads(2) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return