Citation: | LI Hao, ZHANG Yuzhu, HU Haoran, ZHANG Xuan, WANG Jin, LUO Yi. Research on the Influence of JWL EOS Parameters of Explosives on Numerical Simulation of Underwater Explosion[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2025-0023 |
[1] |
温丽晶, 段卓平, 张震宇, 等. 采用遗传算法确定炸药爆轰产物JWL状态方程参数[J]. 爆炸与冲击, 2013, 33(S1): 130-134.
WEN L J, DUAN Z P, ZHANG Z Y, et al. Determination of the JWL EOS parameters for detonation products using genetic algorithm[J]. Explosion and Shock Waves, 2013, 33(S1): 130-134.
|
[2] |
王树山, 贾曦雨, 高源, 等. 水下爆炸动力学的起源、发展与展望[J]. 水下无人系统学报, 2023, 31(1): 10-29.
WANG S S, JIA X Y, GAO Y, et al. Underwater explosion dynamics: Its origin, development, and prospect[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 10-29.
|
[3] |
Cole R H. Underwater explosions[M]. Princeton, NJ, USA: Princeton University Pr. , 1948.
|
[4] |
GAN N, YAO X L, LIU L T, et al. Research on overall damage characteristics of a hull girder under explosion bubble collapse[J]. Ocean Engineering, 2019, 188: 106315. doi: 10.1016/j.oceaneng.2019.106315
|
[5] |
JIN Z, YIN C, CHEN Y, et al. Dynamics of an underwater explosion bubble near a sandwich structure[J]. Journal of Fluids and Structures, 2019, 86: 247-265. doi: 10.1016/j.jfluidstructs.2019.02.022
|
[6] |
李彬, 田恒斗, 刘文思, 等. RDX基含铝炸药JWL-Miller状态方程标定及对舰船结构的毁伤特性[J]. 火炸药学报, 2024, 47(8): 704-713.
LI B, TIAN H D, LIU W S, et al. Calibration of JWL-Miller equation of state for RDX-based aluminized explosives and damage characteristics to ship structures[J]. Chinese Journal of Explosives & Propellants, 2024, 47(8): 704-713.
|
[7] |
王杰, 王景焘, 黄超, 等. 一种面向舰船结构毁伤的大变形流固耦合数值计算方法[J]. 计算力学学报, 2024, 41(2): 335-343.
WANG J, WANG J T, HUANG C, et al. A numerical method for fluid-structure interaction with large deformation towards the damage of warship structures[J]. Chinese Journal of Computational Mechanics, 2024, 41(2): 335-343.
|
[8] |
陈涛, 汪海波, 王丽敏, 等. 不耦合系数对水下爆破破岩效果影响的数值分析[J]. 工程爆破, 2022, 28(6): 25-32.
CHEN T, WANG H B, WANG L M, et al. Numerical analysis of the influence of decoupling coefficient on rock breaking effect of underwater blasting[J]. Engineering Blasting, 2022, 28(6): 25-32.
|
[9] |
吴亮, 余创, 梁志坚, 等. 基于Fluent-EDEM流固耦合算法的水下台阶爆破爆堆形成过程研究[J]. 爆破, 2023, 40(4): 37-43. doi: 10.3963/j.issn.1001-487X.2023.04.005
WU L, YU C, LIANG Z J, et al. Study on formation process of underwater bench blasting pile based on fluid-structure coupling algorithm of Fluent-EDEM[J]. Blasting, 2023, 40(4): 37-43. doi: 10.3963/j.issn.1001-487X.2023.04.005
|
[10] |
杜明燃, 陈宇航, 陆少锋, 等. 基于正交试验法的气泡帷幕削波特性研究[J]. 高压物理学报, 2023, 37(6): 195-205.
DU M R, CHEN Y H, LU S F, et al. Bubble curtain clipping characteristics based on orthogonal test method[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 195-205.
|
[11] |
范怀斌, 陆少锋, 莫崇勋, 等. 基于ANSYS LS-DYNA水下爆破阻波帘的设计与研究[J]. 爆破, 2023, 40(2): 138-143. doi: 10.3963/j.issn.1001-487X.2023.02.020
FAN H B, LU S F, MO C X, et al. Design and research of wave blocking curtain for underwater blasting based on ANSYS LS-DYNA[J]. Blasting, 2023, 40(2): 138-143. doi: 10.3963/j.issn.1001-487X.2023.02.020
|
[12] |
徐辉, 孙占峰, 李庆忠. 标准圆筒试验数据处理和不确定度评定方法[J]. 北京理工大学学报, 2010, 30(5): 626-630.
XU H, SUN Z F, LI Q Z. Data processing and uncertainty evaluation methods for standard cylinder tests[J]. Transactions of Beijing Institute of Technology, 2010, 30(5): 626-630.
|
[13] |
王言金, 张树道, 李华, 等. 炸药爆轰产物Jones-Wilkins-Lee状态方程不确定参数[J]. 物理学报, 2016, 65(10): 245-250.
WANG Y J, ZHANG S D, LI H, et al. Uncertain parameters of Jones-Wilkin-Lee equation of state for detonation products of explosive[J]. Acta Physica Sinica, 2016, 65(10): 245-250.
|
[14] |
陈华, 周海兵, 刘国昭, 等. 圆筒试验JWL状态方程参数的贝叶斯标定[J]. 爆炸与冲击, 2017, 37(4): 585-590.
CHEN H, ZHOU H B, LIU G Z, et al. Bayesian calibration for parameters of JWL equation-of-state parameters in cylinder tests[J]. Explosion and Shock Waves, 2017, 37(4): 585-590.
|
[15] |
刘全, 王瑞利, 林忠, 等. 爆轰计算JWL状态方程参数的不确定度[J]. 爆炸与冲击, 2013, 33(6): 647-654.
LIU Q, WANG R L, LIN Z, et al. Uncertainty of JWL EOS Parameters in explosive numerical simulation[J]. Explosion and Shock Waves, 2013, 33(6): 647-654.
|
[16] |
郝礼楷, 顾文彬, 谢兴博, 等. 基于BP神经网络预测炸药JWL状态方程参数对EFP速度的影响[J]. 兵器装备工程学报, 2023, 44(6): 47-55.
HAO L K, GU W B, XIE X B, et al. Prediction of the influence of parameters of JWL equation of state on EFP velocity based on BP neural network[J]. Journal of Ordnance Equipment Engineering, 2023, 44(6): 47-55.
|
[17] |
敖启源, 卢熹, 姜智雅, 等. 水下爆炸冲击波数值仿真精度研究[J]. 水下无人系统学报, 2024, 32(1): 158-165.
AO Q Y, LU X, JIANG Z Y, et al. Numerical simulation accuracy study of underwater explosion shock waves[J]. Journal of Unmanned Undersea Systems, 2024, 32(1): 158-165.
|
[18] |
闫秋实, 常松. 水下爆炸三维数值模拟特征参量敏感性分析[J]. 北京工业大学学报, 2023, 49(10): 1099-1108.
YAN Q S, CHANG S. Underwater explosion 3D numerical simulation characteristic parameter sensitivity analysis[J]. Journal of Beijing University of Technology, 2023, 49(10): 1099-1108.
|
[19] |
崔浩, 郭锐, 宋浦, 等. 基于遗传算法辨识炸药JWL状态方程参数的研究[J]. 振动与冲击, 2022, 41(9): 174-180, 209.
CUI H, GUO R, SONG P, et al. Research on the identification of JWL equation of state parameters of explosives based on genetic algorithm[J]. Journal of Vibration and Shock, 2022, 41(9): 174-180, 209.
|
[20] |
陈兴, 周兰伟, 李福明, 等. 爆炸深度对装药水下载荷的影响[J]. 兵器装备工程学报, 2021, 42(8): 79-84. doi: 10.11809/bqzbgcxb2021.08.013
CHEN X, ZHOU L W, LI F M, et al. Research on influence of depth of charge on underwater explosion load[J]. Journal of Ordnance Equipment Engineering, 2021, 42(8): 79-84. doi: 10.11809/bqzbgcxb2021.08.013
|
[21] |
ЛП奥尔连科. 爆炸物理学[M]. 孙承纬, 译. 北京: 科学出版社, 2011.
|
[22] |
徐庆涛, 马宏昊, 周章涛, 等. 基于压力-冲量曲线的水下爆炸压力-时间公式[J]. 爆炸与冲击, 2024, 44(8): 159-166.
XU Q T, MA H H, ZHOU Z T, et al. Pressure-time formula for underwater explosion based on pressure-impulse curve[J]. Explosion and Shock Waves, 2024, 44(8): 159-166.
|
[23] |
李科斌, 董新龙, 李晓杰, 等. 水下爆炸实验法在工业炸药JWL状态方程测定中的应用研究[J]. 兵工学报, 2020, 41(3): 488-494.
LI K B, DONG X L, LI X J, et al. Research on parameters determination of JWL EOS for commercial explosives based on underwater explosion test[J]. Acta Armamentarii, 2020, 41(3): 488-494.
|
[24] |
JACKSON S I. Scaling of the detonation product state with reactant kinetic energy[J]. Combustion and Flame, 2018, 190: 240-251. doi: 10.1016/j.combustflame.2017.12.008
|