• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 33 Issue 2
May  2025
Turn off MathJax
Article Contents
GAO Yu, XIAO Qiao, WANG Chaofeng. MARL-TS Method for Underwater Acoustic Networks in Time-Varying Channels[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 261-271. doi: 10.11993/j.issn.2096-3920.2025-0015
Citation: GAO Yu, XIAO Qiao, WANG Chaofeng. MARL-TS Method for Underwater Acoustic Networks in Time-Varying Channels[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 261-271. doi: 10.11993/j.issn.2096-3920.2025-0015

MARL-TS Method for Underwater Acoustic Networks in Time-Varying Channels

doi: 10.11993/j.issn.2096-3920.2025-0015
  • Received Date: 2025-01-16
  • Accepted Date: 2025-03-13
  • Rev Recd Date: 2025-03-12
  • Available Online: 2025-03-27
  • Underwater acoustic communication faces numerous challenges in transmission scheduling and decision-making due to its high propagation delay, time-varying channel characteristics, and limited bandwidth. To enhance communication efficiency in complex underwater acoustic environments, this paper proposed a multi-agent reinforcement learning(MARL)-based cross-layer transmission scheduling(TS) method for underwater acoustic networks, termed MARL-TS. This method addressed the high propagation delay and dynamic channel environments by leveraging transmission node buffer states and channel conditions as the foundation while optimizing transmission efficiency and transmission delay of the communication network. It adaptively performs cross-layer optimization to jointly optimize power allocation and timeslot resource scheduling. To learn the optimal transmission strategy, this paper constructed a learnable policy network and a value network, integrating multi-agent cooperative learning to improve strategy optimization efficiency and adaptive decision-making capabilities. Simulation results demonstrate that compared with existing reinforcement learning-based multiple access control(MAC) protocols, MARL-TS significantly enhances transmission efficiency and reduces transmission delay. Notably, it exhibits superior adaptability and stability in multi-node and high-load scenarios, offering a novel approach for optimizing complex underwater communication systems.

     

  • loading
  • [1]
    NEIRA J, SEQUEIROS C, HUAMANI R, et al. Review on unmanned underwater robotics, structure designs, materials, sensors, actuators, and navigation control[J]. Journal of Robotics, 2021, 1: 5542920.
    [2]
    江子龙, 王焱, 钟雪峰, 等. 基于NS-3的声电协同网络实现及路由性能分析[J]. 电子与信息学报, 2022, 44(6): 2014-2023. doi: 10.11999/JEIT211274

    JIANG Z L, WANG Y, ZHONG X F, et al. Implementation of acoustic-electric cooperative networks and routing performance analysis based on NS-3[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2014-2023. doi: 10.11999/JEIT211274
    [3]
    刘千里, 吴晖. 水下无线传感器网络通信技术研究现状及趋势[J]. 舰船电子工程, 2022, 42(9): 20-24.

    LIU Q L, WU H. Research status and trends of underwater wireless sensor network communication technology[J]. Ship Electronic Engineering, 2022, 42(9): 20-24.
    [4]
    瞿逢重, 付雁冰, 杨劭坚, 等. 应用于海洋物联网的水声通信技术发展综述[J]. 哈尔滨工程大学学报, 2023, 44(11): 1937-1949. doi: 10.11990/jheu.202306023

    QU F Z, FU Y B, YANG S J, et al. An overview of the development status of underwater acoustic communication technology applied to ocean internet-of-things[J]. Journal of Harbin Engineering University, 2023, 44(11): 1937-1949. doi: 10.11990/jheu.202306023
    [5]
    CHAUDHARY M, GOYAL N, BENSLIMANE A, et al. Underwater wireless sensor networks: Enabling technologies for node deployment and data collection challenges[J]. IEEE Internet of Things Journal, 2022, 10(4): 3500-3524.
    [6]
    ZHAO N, YAO N, GAO Z. An adaptive MAC protocol based on time-domain interference alignment for UWANs[J]. The Computer Journal, 2023, 66(12): 3015-3028.
    [7]
    赵昊. 基于深度学习的水声通信物理层技术研究[D]. 广州: 华南理工大学, 2023.
    [8]
    PALLARES O, BOUVET P J, RIO J D. TS-MUWSN: Time synchronization for mobile underwater sensor networks[J]. IEEE Journal of Oceanic Engineering, 2016, 41(4): 763-775. doi: 10.1109/JOE.2016.2581658
    [9]
    HSU C C, KUO M S, CHOU C F, et al. The elimination of spatial-temporal uncertainty in underwater sensor networks[J]. IEEE/ACM Transactions on Networking, 2013, 21(4): 1229-1242.
    [10]
    HUANG Q H, LI W, ZHAN W C, et al. Dynamic underwater acoustic channel tracking for correlated rapidly time-varying channels[EB/OL]. (2021-03-01)[2025-03-20]. https://arXiv:2103.00859.
    [11]
    DU H, WANG X, SUN W, et al. An adaptive MAC protocol for underwater acoustic networks based on deep reinforcement learning[C]//The 6th International Conference on Communications, Information System and Computer Engineering. Guangzhou, China: IEEE, 2025.
    [12]
    TOMOVIC S, RADUSINOVI I. DR-ALOHA-Q: A Q-Learning-based adaptive MAC protocol for underwater acoustic sensor networks[J]. Sensors, 2023, 23(9): 4474.
    [13]
    HUANG Y, WANG H, CHEN Y, et al. Distributed deep reinforcement learning with prioritized replay for power allocation in underwater acoustic communication networks[J]. IEEE Internet of Things Journal, 2024, 11(6): 9915-9928.
    [14]
    YE X, YU Y, FU L. Deep reinforcement learning based MAC protocol for underwater acoustic networks[J]. IEEE Transactions on Mobile Computing, 2020, 21(5): 1625-1638.
    [15]
    HUANG J J, YE X W, FU L Q. MAC protocol for underwater acoustic multi-cluster networks based on multi-agent reinforcement learning[C]//The 17th International Conference on Underwater Networks & Systems. Guangzhou, China: ACM, 2023, 10: 1-5.
    [16]
    WANG C, WANG Z, SUN W, et al. Reinforcement learning-based adaptive transmission in time-varying underwater acoustic channels[J]. IEEE Access, 2017, 6: 2541-2558.
    [17]
    WANG H, LI Y, QIAN J. Self-adaptive resource allocation in underwater acoustic interference channel: A reinforcement learning approach[J]. IEEE Internet of Things Journal, 2020, 7(4): 2816-2827.
    [18]
    STOJANOVIC M, PREISIG J. Underwater acoustic communication channels: Propagation models and statistical characterization[J]. IEEE Communications Magazine, 2009, 47(1): 84-89.
    [19]
    WANG C F, ZHAO W K, BI Z C, et al. A joint power allocation and scheduling algorithm based on quasi-interference alignment in underwater acoustic networks[C]//Oceans 2022, Virginia, USA: IEEE, 2022.
    [20]
    TSATSANIS M K, GIANNAKIS G B, ZHOU G. Estimation and equalization of fading channels with random coefficients[J]. Signal Processing, 1996, 53(2-3): 211-229.
    [21]
    SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL]. (2007-8-28)[2025-3-11]. https://arxiv.org/abs/1707.06347.
    [22]
    YU C, VELU A, VINITSKY E, et al. The surprising effectiveness of PPO in cooperative multi-agent games[J]. Advances in Neural Information Processing Systems, 2022, 35: 24611-24624.
    [23]
    LIU W, CAI W, JIANG K, et al. XUANCE: A comprehensive and unified deep reinforcement learning library[EB/OL]. (2023-12-25)[2025-3-11]. https://arxiv.or-g.abs/2312.16248.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article Views(262) PDF Downloads(56) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return