
| Citation: | GAO Ying, LU Mingchun, ZHANG Rubo, WANG Ning. Adaptive Optimization Control of Unmanned Surface Vessel with Thruster Fault[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 333-340, 388. doi: 10.11993/j.issn.2096-3920.2025-0013 |
| [1] |
WANG N, GAO Y, ZHANG X. Data-driven performance-prescribed reinforcement learning control of an unmanned surface vehicle[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(12): 5456-5467. doi: 10.1109/TNNLS.2021.3056444
|
| [2] |
WANG N, GAO Y, YANG C, et al. Reinforcement learning-based finite-time tracking control of an unknown unmanned surface vehicle with input constraints[J]. Neurocomputing, 2022, 484: 26-37. doi: 10.1016/j.neucom.2021.04.133
|
| [3] |
PENG G, LU Z Z, TAN Z J, et al. A novel algorithm based on nonlinear optimization for parameters calibration of wheeled robot mobile chasses[J]. Applied Mathematical Modelling, 2021, 95: 396-408. doi: 10.1016/j.apm.2021.02.012
|
| [4] |
王宁, 张雪峰, 李洁龙, 等. 面向港口环境精细感知的无人船多传感器融合SLAM系统[J]. 船舶工程, 2024, 46(7): 81-89.
|
| [5] |
王宁, 刘永金, 高颖. 未知扰动下的无人艇编队优化轨迹跟踪控制[J]. 中国舰船研究, 2024, 19(1): 178-190.
|
| [6] |
ZHANG Y P, LIN Y J, WANG N. Reinforcement learning-based cooperative hunting for an unmanned surface vehicle swarm[C]//2024 International Conference on Fuzzy Theory and Its Applications(iFUZZY). Kagawa, Japan: IEEE, 2024, 1-6.
|
| [7] |
LIU C, FILARETOV V, ZUEV A, et al. Fault tolerant control in underwater vehicles[J]. Journal of Marine Science & Engineering, 2024, 12(10): 1836.
|
| [8] |
LI J P, FAN Y S, LIU J X. Adaptive NN formation tracking control for the multiple underactuated USVs with prescribed performance and input saturations[J]. Ocean Engineering, 2023, 290: 116274. doi: 10.1016/j.oceaneng.2023.116274
|
| [9] |
SUN Y. Fault-tolerant control of multi-USV systems based on fuzzy systems[C]//The 14th International Conference on Information Science and Technology. Sichuan, China: IEEE, 2024: 237.
|
| [10] |
SUI B W, ZHANG J Q, LIU Z. Prescribed-time dynamic positioning control for USV with lumped disturbances, thruster saturation and prescribed performance constraints[J]. Remote Sensing, 2024, 16(22): 4142. doi: 10.3390/rs16224142
|
| [11] |
WANG Y, YANG X, HAO L Y, et al. Integral sliding mode output feedback control for unmanned marine vehicles using T-S fuzzy model with unknown premise variables and actuator faults[J]. Journal of Marine Science and Engineering, 2024, 12(6): 920. doi: 10.3390/jmse12060920
|
| [12] |
ZHANG Y Y, ZHANG J Q, SUI B. Robust fixed-time adaptive fault-tolerant control for dynamic positioning of ships with thruster faults[J]. Applied Sciences, 2024, 14(13): 5738. doi: 10.3390/app14135738
|
| [13] |
HAO L Y, ZHANG H, GUO G, et al. Quantized sliding mode control of unmanned marine vehicles: Various thruster faults tolerated with a unified model[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(3): 2012-2026.
|
| [14] |
WANG N, DENG Z C. Finite-time fault estimator based fault-tolerance control for a surface vehicle with input saturations[J]. IEEE Transactions on Industrial Informatics, 2019, 16(2): 1172-1181.
|
| [15] |
CHRISTOFIDES P D, LIU J, DE L P D M. Networked and distributed predictive control: methods and nonlinear process network applications[M]. New York, USA: Springer Science & Business Media, 2011.
|
| [16] |
KHALIL H K. Nonlinear systems[M]. New York, USA: Prentice-Hall, 1996.
|