
| Citation: | WU Jiajia, XU Ming. A Secure Communication Method for Unmanned Undersea Systems Oriented to Federated Learning[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 272-279. doi: 10.11993/j.issn.2096-3920.2025-0010 |
| [1] |
ZUO M, TU X, YANG S, et al. Channel distribution and noise characteristics of distributed acoustic sensing underwater communications[J]. IEEE Sensors Journal, 2021, 21(21): 24185-94. doi: 10.1109/JSEN.2021.3115581
|
| [2] |
MEECHAM A, ACKER T. Underwater threat detection and tracking using multiple sensors and advanced processing[C]//IEEE International Carnahan Conference on Security Technology. Orlando, USA: IEEE, 2016: 1-7.
|
| [3] |
HE Y, HAN G, LI A, et al. A federated deep reinforcement learning-based trust model in underwater acoustic sensor networks[J]. IEEE Transactions on Mobile Computing, 2024, 23(5): 5150-61. doi: 10.1109/TMC.2023.3301825
|
| [4] |
AFZAL M U, ABDELLATIF A A. Energy-efficient secure federated learning for UAV swarms[C]//International Conference on Energy Conservation and Efficiency. Lahore, Pakistan: IEEE, 2024: 1-5.
|
| [5] |
PARK J, YU N Y, LIM H. Privacy-preserving federated learning using homomorphic encryption with different encryption keys[C]//International Conference on Information and Communication Technology Convergence. Jeju Island, Korea: IEEE, 2022: 1869-71.
|
| [6] |
XU G, LI H, LIU S, et al. VerifyNet: secure and verifiable federated learning[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 911-926. doi: 10.1109/TIFS.2019.2929409
|
| [7] |
WANG T, LI Y, WU Y, et al. Secrecy driven federated learning via cooperative jamming: An approach of latency minimization[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(4): 1687-1703. doi: 10.1109/TETC.2022.3159282
|
| [8] |
YANG X, LIU Z, TANG X, et al. An efficient and multi-private key secure aggregation scheme for federated learning[J]. IEEE Transactions on Services Computing, 2024, 17(5): 1998-2011. doi: 10.1109/TSC.2024.3451165
|
| [9] |
ISIAM K Y, AHMAD I, RONG Y, et al. Joint energy and security optimization in underwater wireless communication networks[J]. IEEE Internet of Things Journal, 2024, 11(8): 14282-95. doi: 10.1109/JIOT.2023.3340269
|
| [10] |
QARABAQI P, STOJANOVIC M. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 701-717. doi: 10.1109/JOE.2013.2278787
|
| [11] |
LI H, ZHANG Q. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 284-302. doi: 10.1109/TEVC.2008.925798
|
| [12] |
LIU Y, ZHAO T, SHOU G, et al. Joint optimization of latency and energy consumption via deep reinforcement learning for proximity detection in road networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(12): 19457-68. doi: 10.1109/TITS.2024.3448627
|
| [13] |
LinkQuest Inc. Linkquest underwater acoustic modems UWM4000 specifications[EB/OL]. (2006-04-02) [2025-02-24]. https://www.link-quest.com/html/uwm4000.htm.
|
| [14] |
冼敏元, 赵春燕, 何轲, 等. 基于被动时反-随机共振的水下弱信号参数优化检测方法[J]. 水下无人系统学报, 2020, 28(5): 480-496. doi: 10.11993/j.issn.2096-3920.2020.05.002
XIAN M Y, ZHAO C Y, HE K, et al. Optimal approach of weak underwater acoustic signal detection based on passive time-reversal stochastic resonance[J]. Journal of Unmanned Undersea Systems, 2020, 28(5): 480-496. doi: 10.11993/j.issn.2096-3920.2020.05.002
|