Citation: | CHEN Chaoyang, TANG Yute, HUANG Yi, LIU Zhiqun. Three-Dimensional Path Planning of AUVs in Dynamic Obstacle Environments[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 400-409. doi: 10.11993/j.issn.2096-3920.2025-0008 |
[1] |
高剑, 张福斌. 无人水下航行器控制系统[M]. 西安: 西北工业大学出版社, 2018: 1-9.
|
[2] |
徐玉如, 李彭超. 水下机器人发展趋势[J]. 自然杂志, 2011, 33(3): 125-132, 2.
|
[3] |
钟宏伟. 国外无人水下航行器装备与技术现状及展望[J]. 水下无人系统学报, 2017, 25(4): 215-225.
ZHONG H W. Review and prospect of equipment and techniques for unmanned undersea vehicle in foreign countries[J]. Journal of Unmanned Undersea Systems, 2017, 25(4): 215-225.
|
[4] |
潘光, 宋保维, 黄桥高, 等. 水下无人系统发展现状及其关键技术[J]. 水下无人系统学报, 2017, 25(1): 44-51.
PAN G, SONG B W, HUANG Q G, et al. Development and key techniques of unmanned undersea system[J]. Journal of Unmanned Undersea Systems, 2017, 25(1): 44-51.
|
[5] |
SHOJAEI K, CHATRAEI A. Robust platoon control of underactuated autonomous underwater vehicles subjected to nonlinearities, uncertainties and range and angle constraints[J]. Applied Ocean Research, 2021, 110: 102594. doi: 10.1016/j.apor.2021.102594
|
[6] |
AGHABABA M P, AMROLLAHI M H, BORJKHANI M. Application of GA, PSO, and ACO algorithms to path planning of autonomous underwater vehicles[J]. Journal of Marine Science and Application, 2012, 11: 378-386. doi: 10.1007/s11804-012-1146-x
|
[7] |
DIJKSTRA E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1: 269-271.
|
[8] |
HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107. doi: 10.1109/TSSC.1968.300136
|
[9] |
KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Research, 1986, 5(1): 90-98. doi: 10.1177/027836498600500106
|
[10] |
DORIGO M, MANIEZZO V, COLORNI A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B(Cybernetics), 1996, 26(1): 29-41. doi: 10.1109/3477.484436
|
[11] |
LAVALLE S. Rapidly-exploring random trees: A new tool for path planning: Technical Report TR 98-11[R]. Iowa State: Iowa State University, Department of Computer Science, 1998.
|
[12] |
KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation, 1996, 12(4): 566-580. doi: 10.1109/70.508439
|
[13] |
朱蟋蟋, 孙兵, 朱大奇. 基于改进D*算法的AUV三维动态路径规划[J]. 控制工程, 2021, 28(4): 736-743.
|
[14] |
ZHUANG Y, HUANG H, SHARMA S, et al. Cooperative path planning of multiple autonomous underwater vehicles operating in dynamic ocean environment[J]. ISA Transactions, 2019, 94: 174-186. doi: 10.1016/j.isatra.2019.04.012
|
[15] |
YAO X, WANG F, YUAN C, et al. Path planning for autonomous underwater vehicles based on interval optimization in uncertain flow fields[J]. Ocean Engineering, 2021, 234: 108675. doi: 10.1016/j.oceaneng.2021.108675
|
[16] |
YAN Z, ZHANG J, TANG J. Path planning for autonomous underwater vehicle based on an enhanced water wave optimization algorithm[J]. Mathematics and Computers in Simulation, 2021, 181: 192-241. doi: 10.1016/j.matcom.2020.09.019
|
[17] |
BHOPALE P, KAZI F, SINGH N. Reinforcement learning based obstacle avoidance for autonomous underwater vehicle[J]. Journal of Marine Science and Application, 2019, 18: 228-238. doi: 10.1007/s11804-019-00089-3
|
[18] |
CARLUCHO I, DE PAULA M, WANG S, et al. Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning[J]. Robotics and Autonomous Systems, 2018, 107: 71-86. doi: 10.1016/j.robot.2018.05.016
|
[19] |
LI Y, WANG Y, YU W, et al. Multiple autonomous underwater vehicle cooperative localization in anchor-free environments[J]. IEEE Journal of Oceanic Engineering, 2019, 44(4): 895-911. doi: 10.1109/JOE.2019.2935516
|
[20] |
WOO J, KIM N. Collision avoidance for an unmanned surface vehicle using deep reinforcement learning[J]. Ocean Engineering, 2020, 199: 107001. doi: 10.1016/j.oceaneng.2020.107001
|
[21] |
CHE G, YU Z. Neural-network estimators based fault-tolerant tracking control for AUV via ADP with rudders faults and ocean current disturbance[J]. Neurocomputing, 2020, 411: 442-454. doi: 10.1016/j.neucom.2020.06.026
|
[22] |
WU X, CHEN H, CHEN C, et al. The autonomous navigation and obstacle avoidance for USVs with ANOA deep reinforcement learning method[J]. Knowledge-Based Systems, 2020, 196: 105201. doi: 10.1016/j.knosys.2019.105201
|
[23] |
CHU Z, WANG F, LEI T, et al. Path planning based on deep reinforcement learning for autonomous underwater vehicles under ocean current disturbance[J]. IEEE Transactions on Intelligent Vehicles, 2022, 8(1): 108-120.
|