
| Citation: | HU Qianwei, WANG Daiwei, LI Renjie, YU Xiaofan, KANG Bin, SU Ruoyu. Underwater Visual Object Tracking Method Based on Scene Perception[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 212-219, 290. doi: 10.11993/j.issn.2096-3920.2025-0007 |
| [1] |
吴晏辰, 王英民. 面向小样本数据的水下目标识别神经网络深层化研究[J]. 西北工业大学学报, 2022, 40(1): 40-46. doi: 10.3969/j.issn.1000-2758.2022.01.005
WU Y C, WANG Y M. A research on underwater target recognition neural network for small samples[J]. Journal of Northwestern Polytechnical University, 2022, 40(1): 40-46. doi: 10.3969/j.issn.1000-2758.2022.01.005
|
| [2] |
CAI L, MCGUIRE N E, HANLON R, et al. Semi-supervised visual tracking of marine animals using autonomous underwater vehicles[J]. International Journal of Computer Vision, 2023, 131(6): 1406-1427.
|
| [3] |
KHAN S, ULLAH I, ALI F, et al. Deep learning-based marine big data fusion for ocean environment monitoring: Towards shape optimization and salient objects detection[J]. Frontiers in Marine Science, 2023, 9: 1094915.
|
| [4] |
KATIJA K, ROBERTS P L D, DANIELS J, et al. Visual tracking of deepwater animals using machine learning-controlled robotic underwater vehicles[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, HI, USA: IEEE, 2021: 860-869.
|
| [5] |
YE B, CHANG H, MA B, et al. Joint feature learning and relation modeling for tracking: A one-stream framework[C]//European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022: 341-357.
|
| [6] |
CHEN Y H, WANG C Y, YANG C Y, et al. NeighborTrack: Single object tracking by bipartite matching with neighbor tracklets and its applications to sports[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, Canada: IEEE, 2023: 5139-5148.
|
| [7] |
LI Y, WANG B, LI Y, et al. Underwater object tracker: UOSTrack for marine organism grasping of underwater vehicles[J]. Ocean Engineering, 2023, 285: 115449.
|
| [8] |
ZHANG C, LIU L, HUANG G, et al. WebUOT-1M: Advancing deep underwater object tracking with a million-scale benchmark[C]//The Thirty-Eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track.Vancouver, Canada: NeurIPS, 2024.
|
| [9] |
KEZEBOU L, OLUDARE V, PANETTA K, et al. Underwater object tracking benchmark and dataset[C]//2019 IEEE International Symposium on Technologies for Homeland Security(HST). Woburn, Massachusetts, USA: IEEE, 2019: 1-6.
|
| [10] |
PANETTA K, KEZEBOU L, OLUDARE V, et al. Comprehensive underwater object tracking benchmark dataset and underwater image enhancement with GAN[J]. IEEE Journal of Oceanic Engineering, 2021, 47(1): 59-75.
|
| [11] |
ALAWODE B, GUO Y, UMMAR M, et al. UTB180: A high-quality benchmark for underwater tracking[C]//Proceedings of the Asian Conference on Computer Vision. Macao, China: Springer, 2022: 3326-3342.
|
| [12] |
ALAWODE B, DHAREJO F A, UMMAR M, et al. Improving underwater visual tracking with a large scale dataset and image enhancement[EB/OL]. (2023-08-30)[2025-03-20]. arXiv preprint arXiv: 2308.15816, 2023.
|
| [13] |
VASWANI, ASHISH, NOAM, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 5998-6008.
|
| [14] |
KUGARAJEEVAN J, KOKUL T, RAMANAN A, et al. Transformers in single object tracking: An experimental survey[J]. IEEE Access, 2023, 11: 80297-80326.
|
| [15] |
ZHANG Q, CAO R, SHI F, et al. Interpreting CNN knowledge via an explanatory graph[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Hilton New Orleans Riverside, New Orleans, Louisiana, USA: AAAI, 2018.
|
| [16] |
SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905.
|
| [17] |
WANG Y, SHEN X, YUAN Y, et al. Tokencut: Segmenting objects in images and videos with self-supervised transformer and normalized cut[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(12): 15790-15801.
|
| [18] |
AHMED M, SERAJ R, ISLAM S M S. The K-means algorithm: A comprehensive survey and performance evaluation[J]. Electronics, 2020, 9(8): 1295.
|
| [19] |
GUPTA M R, CHEN Y. Theory and use of the EM algorithm[J]. Foundations and Trends in Signal Processing, 2011, 4(3): 223-296.
|
| [20] |
ZHU Y, XU Y, YU F, et al. Deep graph contrastive representation learning[EB/OL]. (2020-06-08) [2025-03-20]. arXiv preprint arXiv: 2006.04131, 2020.
|
| [21] |
HUANG L, ZHAO X, HUANG K. GOT-10k: A large high-diversity benchmark for generic object tracking in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5): 1562-1577.
|