Citation: | PANG Zhouqi, LIN Xiaobo, HAO Chengpeng, CHENG Wenxin. Vector Propulsion AUV Path Planning Method Based on Deep Reinforcement Learning[J]. Journal of Unmanned Undersea Systems, 2025, 33(4): 638-647. doi: 10.11993/j.issn.2096-3920.2025-0005 |
[1] |
崔荣鑫, 徐德民, 严卫生. 一种自主水下航行器路径规划算法[J]. 系统仿真学报, 2006, 18(12): 3373-3376. doi: 10.3969/j.issn.1004-731X.2006.12.012
CUI R X, XU D M, YAN W S. A path planning algorithm for autonomous underwater vehicles[J]. Journal of System Simulation, 2006, 18(12): 3373-3376. doi: 10.3969/j.issn.1004-731X.2006.12.012
|
[2] |
FAN X J, GUO Y J, LIU H, et al. Improved artificial potential field method applied for AUV path planning[J]. Mathematical Problems in Engineering, 2020, 4(1): 1-21.
|
[3] |
ZHANG W, WANG N, WU W. A hybrid path planning algorithm considering AUV dynamic constraints based on improved A* algorithm and APF algorithm[J]. Ocean Engineering, 2023, 285(10): 115333.
|
[4] |
LI J, YANG C. AUV path planning based on improved RRT and Bezier curve optimization[C]//2020 IEEE International Conference on Mechatronics and Automation (ICMA). China, Beijing: IEEE, 2020: 1359-1364.
|
[5] |
HAO K, ZHAO J, LI Z, et al. Dynamic path planning of a three-dimensional underwater AUV based on an adaptive genetic algorithm[J]. Ocean Engineering, 2022, 263(4): 112421.
|
[6] |
MINH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. doi: 10.1038/nature14236
|
[7] |
HUANG H Q, JIN C. A novel particle swarm optimization algorithm based on reinforcement learning mechanism for AUV path planning[J]. Complexity, 2021, 12(1): 1-13.
|
[8] |
ZHANG H B, SHI X P. An improved quantum behaved particle swarm optimization algorithm combined with reinforcement learning for AUV path planning[J]. Journal of Robotics, 2023, 5(1): 8821906.
|
[9] |
李佩娟, 颜庭武, 杨书涛, 等. 基于强化学习的无人水面艇能耗最优路径规划算法[J]. 水下无人系统学报, 2023, 31(2): 237-243.
LI P J, YAN T W, YANG S T, et al. Optimization path planning algorithm for energy consumption of unmanned surface vessels based on reinforcement learning[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 237-243.
|
[10] |
XI M, YANG J C, WEN J B, et al. Comprehensive ocean information-enabled AUV path planning via reinforcement learning[J]. IEEE Internet of Things Journal, 2022, 9(18): 17440-17451. doi: 10.1109/JIOT.2022.3155697
|
[11] |
YANG J, NI J, XI M, et al, Intelligent path planning of underwater robot based on reinforcement learning[J]. IEEE Transactions on Automation Science and Engineering, 2022, 20(3): 1983-1996.
|
[12] |
CHU Z Z, WANG F L, LEI T J, et al. Path planning based on deep reinforcement learning for autonomous underwater vehicles under ocean current disturbance[J]. IEEE Transactions on Intelligent Vehicles, 2022, 8(1), 108-120.
|
[13] |
YUAN J, WANG H, ZHANG H, et al. AUV obstacle avoidance planning based on deep reinforcement learning[J]. J. Mar. Sci. Eng, 2021, 9(11): 1166.
|
[14] |
HE Z, DONG L, SUN C. Asynchronous multithreading reinforcement-learning-based path planning and tracking for unmanned underwater vehicle[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(5): 2757-2769.
|
[15] |
WANG Z, ZHANG S, FENG X, et al. Autonomous underwater vehicle path planning based on actor-multi-critic reinforcement learning[C]//Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2021, 235(10): 1787-1796.
|
[16] |
TANG Z C, CAO X, ZHOU Z H, et al, Path planning of autonomous underwater vehicle in unknown environment based on improved deep reinforcement learning[J]. Ocean Engineering, 2024, 301(11): 117547.
|
[17] |
LYU X, SUN Y, WANG L, et al. End-to-end AUV local motion planning method based on deep reinforcement learning[J]. Journal of Marine Science and Engineering, 2023, 11(9): 1796.
|
[18] |
BEHNAZ H, ALIREZA K, POURIA S, Deep reinforcement learning for adaptive path planning and control of an autonomous underwater vehicle[J]. Applied Ocean Research, 2022, 129(10), 103326.
|
[19] |
WANG H, GAO W, WANG Z, et al. Research on obstacle avoidance planning for UUV based on A3C algorithm[J]. J. Mar. Sci. Eng, 2024, 12(1): 63.
|
[20] |
SUN Y, CHENG J, ZHANG G, et al. Mapless motion planning system for an autonomous underwater vehicle using policy gradient-based deep reinforcement learning[J]. Journal of Intelligent & Robotic Systems, 2019, 96(5): 591-601.
|
[21] |
JIANG D, FANG Z, CHENG C, et al. Action guidance-based deep interactive reinforcement learning for AUV path planning[C]//2022 International Conference on Machine Learning, Control, and Robotics(MLCR). Suzhou, China: IEEE, 2022: 158-165.
|
[22] |
SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL]. (2017-08-28)[2025-08-01]. http://arXiv.1707.06347.
|
[23] |
SAMARTH S, HOMANGA B, D2RL: Deep dense architectures in reinforcement learning[C]//NeurIPS. Vancouver, Canada: IEEE, 2020.
|
[24] |
屈裕安, 谢寿生, 宋志平. 矢量喷管控制对发动机性能的影响[J]. 航空动力学报, 2004, 19(3): 300-304.
|
[25] |
WANG Y H, HE H, TAN X Y, Truly proximal policy optimization[C]//Proceedings of the 35th Uncertainty in Artificial Intelligence Conference. Tel Aviv, Israel: PMLR, 2020(115): 113-122.
|
[26] |
郭可建, 林晓波, 郝程鹏, 等. 基于神经网络状态估计器的高速AUV强化学习控制[J]. 水下无人系统学报, 2022, 30(2): 147-156. doi: 10.11993/j.issn.2096-3920.2022.02.002
GUO K J, LIN X B, HAO C P, et al. High speed AUV reinforcement learning control based on neural network state estimator[J]. Journal of Unmanned Underaea Systems, 2022, 30(2): 147-156. doi: 10.11993/j.issn.2096-3920.2022.02.002
|