
| Citation: | WEI Nan, YANG Wankou, ZHOU Weijie, JIANG Longyu. Underwater Object Detection Method with Enhanced Wavelet Transform Features[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 204-211. doi: 10.11993/j.issn.2096-3920.2025-0003 |
| [1] |
FU C P, LIU R S, FAN X, et al. Rethinking general underwater object detection: Datasets, challenges, and solutions[J]. Neurocomputing, 2023, 517: 243-256. doi: 10.1016/j.neucom.2022.10.039
|
| [2] |
LIN W H, ZHONG J X, LIU S, et al. Roimix: Proposal-fusion among multiple images for underwater object detection[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain: IEEE, 2020: 2588-2592.
|
| [3] |
CHEN L, LIU Z, TONG L, et al. Underwater object detection using invert multi-class adaboost with deep learning[C]//2020 International Joint Conference on Neural Networks(IJCNN). Glasgow, United Kingdom: IEEE, 2020: 1-8.
|
| [4] |
LIANG X, SONG P. Excavating ROI attention for underwater object detection[C]//2022 IEEE International Conference on Image Processing(ICIP). Bordeaux, France: IEEE, 2022: 2651-2655.
|
| [5] |
SONG P, LI P, DAI L, et al. Boosting R-CNN: Reweighting R-CNN samples by RPN's error for underwater object detection[J]. Neurocomputing, 2023, 530: 150-164.
|
| [6] |
FU C, FAN X, XIAO J, et al. Learning heavily-degraded prior for underwater object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(11): 6887-6896.
|
| [7] |
ZHOU J, HE Z, LAM K M, et al. AMSP-UOD: When vortex convolution and stochastic perturbation meet underwater object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI, 2024, 38(7): 7659-7667.
|
| [8] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, Nevada, USA: IEEE, 2016: 770-778.
|
| [9] |
SUN S, REN W, WANG T, et al. Rethinking image restoration for object detection[J]. Advances in Neural Information Processing Systems, 2022, 35: 4461-4474.
|
| [10] |
ALFRED H. Zur theorie der orthogonalen funktionensysteme[J]. Mathematische Annalen, 1910, 69: 331-371.
|
| [11] |
LIU C, LI H, WANG S, et al. A dataset and benchmark of underwater object detection for robot picking[C]//2021 IEEE International Conference on Multimedia & Wxpo workshops(ICMEW). Shenzhen, China: IEEE, 2021: 1-6.
|
| [12] |
PEDERSEN M , HAURUM J B , GADE R, et al. Detection of marine animals in a new underwater dataset with varying visibility[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach, California, USA: IEEE, 2019: 18-26.
|
| [13] |
DENG J, DONG W, SOCHER R, et al. Imagenet: A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Florida, USA: IEEE, 2009: 248-255.
|
| [14] |
TIAN Z, SHEN C, CHEN H, et al. FCOS: A simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(4): 1922-1933.
|
| [15] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
|
| [16] |
YANG Z, LIU S, HU H, et al. Reppoints: Point set representation for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019: 9657-9666.
|
| [17] |
LI X, WANG W, WU L, et al. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems, 2020, 33: 21002-21012.
|
| [18] |
ZHU C, HE Y, SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, California, USA: IEEE, 2019: 840-849.
|
| [19] |
ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, Washington, USA: IEEE, 2020: 9759-9768.
|
| [20] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2980-2988.
|
| [21] |
SUN P, ZHANG R, JIANG Y, et al. Sparse R-CNN: End-to-end object detection with learnable proposals[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Nashville, Tennessee, USA: IEEE, 2021: 14454-14463.
|
| [22] |
CAI Z, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Utah, USA: IEEE, 2018: 6154-6162.
|
| [23] |
JIANG L, WANG Y, JIA Q, et al. Underwater species detection using channel sharpening attention[C]//Proceedings of the 29th ACM International Conference on Multimedia. Chengdu, China: ACM Multimedia, 2021: 4259-4267.
|