• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 33 Issue 2
May  2025
Turn off MathJax
Article Contents
WEI Nan, YANG Wankou, ZHOU Weijie, JIANG Longyu. Underwater Object Detection Method with Enhanced Wavelet Transform Features[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 204-211. doi: 10.11993/j.issn.2096-3920.2025-0003
Citation: WEI Nan, YANG Wankou, ZHOU Weijie, JIANG Longyu. Underwater Object Detection Method with Enhanced Wavelet Transform Features[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 204-211. doi: 10.11993/j.issn.2096-3920.2025-0003

Underwater Object Detection Method with Enhanced Wavelet Transform Features

doi: 10.11993/j.issn.2096-3920.2025-0003
  • Received Date: 2025-01-06
  • Accepted Date: 2025-02-25
  • Rev Recd Date: 2025-02-18
  • Available Online: 2025-03-24
  • The complex and unique underwater environment results in low-quality underwater images, characterized by low contrast, blurriness, and underwater degradation, which significantly affects the capabilities of underwater object detection. To address this issue, this paper proposed an underwater object detection method with enhanced wavelet transform features. The paper introduced discrete wavelet transform(DWT) to decompose the multi-level features extracted by the deep learning framework into high- and low-frequency components. These frequency domain feature components were then interactively enhanced using a frequency domain interaction module based on the attention mechanism designed in this work, optimizing the ability of feature expression. The enhanced features were subsequently fed into the object detection network to improve the object detection performance. Experimental results demonstrate that the proposed underwater object detection method outperforms conventional object detection methods, significantly improving the ability to detect objects in underwater environments.

     

  • loading
  • [1]
    FU C P, LIU R S, FAN X, et al. Rethinking general underwater object detection: Datasets, challenges, and solutions[J]. Neurocomputing, 2023, 517: 243-256. doi: 10.1016/j.neucom.2022.10.039
    [2]
    LIN W H, ZHONG J X, LIU S, et al. Roimix: Proposal-fusion among multiple images for underwater object detection[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain: IEEE, 2020: 2588-2592.
    [3]
    CHEN L, LIU Z, TONG L, et al. Underwater object detection using invert multi-class adaboost with deep learning[C]//2020 International Joint Conference on Neural Networks(IJCNN). Glasgow, United Kingdom: IEEE, 2020: 1-8.
    [4]
    LIANG X, SONG P. Excavating ROI attention for underwater object detection[C]//2022 IEEE International Conference on Image Processing(ICIP). Bordeaux, France: IEEE, 2022: 2651-2655.
    [5]
    SONG P, LI P, DAI L, et al. Boosting R-CNN: Reweighting R-CNN samples by RPN's error for underwater object detection[J]. Neurocomputing, 2023, 530: 150-164.
    [6]
    FU C, FAN X, XIAO J, et al. Learning heavily-degraded prior for underwater object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(11): 6887-6896.
    [7]
    ZHOU J, HE Z, LAM K M, et al. AMSP-UOD: When vortex convolution and stochastic perturbation meet underwater object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI, 2024, 38(7): 7659-7667.
    [8]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, Nevada, USA: IEEE, 2016: 770-778.
    [9]
    SUN S, REN W, WANG T, et al. Rethinking image restoration for object detection[J]. Advances in Neural Information Processing Systems, 2022, 35: 4461-4474.
    [10]
    ALFRED H. Zur theorie der orthogonalen funktionensysteme[J]. Mathematische Annalen, 1910, 69: 331-371.
    [11]
    LIU C, LI H, WANG S, et al. A dataset and benchmark of underwater object detection for robot picking[C]//2021 IEEE International Conference on Multimedia & Wxpo workshops(ICMEW). Shenzhen, China: IEEE, 2021: 1-6.
    [12]
    PEDERSEN M , HAURUM J B , GADE R, et al. Detection of marine animals in a new underwater dataset with varying visibility[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach, California, USA: IEEE, 2019: 18-26.
    [13]
    DENG J, DONG W, SOCHER R, et al. Imagenet: A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Florida, USA: IEEE, 2009: 248-255.
    [14]
    TIAN Z, SHEN C, CHEN H, et al. FCOS: A simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(4): 1922-1933.
    [15]
    REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
    [16]
    YANG Z, LIU S, HU H, et al. Reppoints: Point set representation for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019: 9657-9666.
    [17]
    LI X, WANG W, WU L, et al. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems, 2020, 33: 21002-21012.
    [18]
    ZHU C, HE Y, SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, California, USA: IEEE, 2019: 840-849.
    [19]
    ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, Washington, USA: IEEE, 2020: 9759-9768.
    [20]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2980-2988.
    [21]
    SUN P, ZHANG R, JIANG Y, et al. Sparse R-CNN: End-to-end object detection with learnable proposals[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Nashville, Tennessee, USA: IEEE, 2021: 14454-14463.
    [22]
    CAI Z, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Utah, USA: IEEE, 2018: 6154-6162.
    [23]
    JIANG L, WANG Y, JIA Q, et al. Underwater species detection using channel sharpening attention[C]//Proceedings of the 29th ACM International Conference on Multimedia. Chengdu, China: ACM Multimedia, 2021: 4259-4267.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article Views(1224) PDF Downloads(73) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return