Citation: | XU Chuanxin, LIU Guijie, MA Penglei, LI Guanghao, YAO Bing, ZENG Jiajun. Numerical Simulation of Variable-Speed Propulsion Characteristics of Bionic Undulating Fins[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 450-458. doi: 10.11993/j.issn.2096-3920.2025-0001 |
[1] |
王文谦, 马鹏磊, 李广浩, 等. 仿生机器鱼步态控制及闭环运动控制方法综述[J]. 中国舰船研究, 2024, 19(1): 29-45.
WANG W Q, MA P L, LI G H, et al. Review of gait control and closed-loop motion control methods for bionic robotic fish[J]. Chinese Journal of Ship Research, 2024, 19(1): 29-45.
|
[2] |
DONG H, WU Z, ZHANG P, et al. Separate control strategy for a biomimetic gliding robotic fish[J]. IEEE/ASME Transactions on Mechatronics, 2021, 27(5): 2535-44.
|
[3] |
SHAO H, DONG B, ZHENG C, et al. Thrust improvement of a biomimetic robotic fish by using a deformable caudal fin[J]. Biomimetics, 2022, 7(3): 113.
|
[4] |
WANG M, WANG K, ZHAO Q, et al. LQR control and optimization for trajectory tracking of biomimetic robotic fish based on unreal engine[J]. Biomimetics, 2023, 8(2): 236.
|
[5] |
CAO Y H, XIE Y, HE Y, et al. Bioinspired central pattern generator and T-S fuzzy neural network-based control of a robotic manta for depth and heading tracking[J]. Journal of Marine Science and Engineering, 2022, 10(6): 758. doi: 10.3390/jmse10060758
|
[6] |
HAO Y, CAO Y, CAO Y, et al. Course control of a manta robot based on amplitude and phase differences[J]. Journal of Marine Science and Engineering, 2022, 10(2): 285. doi: 10.3390/jmse10020285
|
[7] |
WANG M, ZHANG Y, YU J. An SNN-CPG hybrid locomotion control for biomimetic robotic fish[J]. Journal of Intelligent & Robotic Systems, 2022, 105(2): 45.
|
[8] |
CHEN L, HU Q, ZHANG H, et al. Research on underwater motion modeling and closed-loop control of bionic undulating fin robot[J]. Ocean Engineering, 2024, 299: 117400. doi: 10.1016/j.oceaneng.2024.117400
|
[9] |
LE T L, DAT P T. A computational fluid dynamics study of modeling and hydrodynamic characteristics of a bionic undulating fin[J]. International Journal of Mechanical Engineering, 2022, 7(4): 949.
|
[10] |
HAN P, LAUDER G V, DONG H. Hydrodynamics of median-fin interactions in fish-like locomotion: Effects of fin shape and movement[J]. Physics of Fluids, 2020, 32(1): 011902.
|
[11] |
CHEN L, BI S, CAI Y, et al. Design and hydrodynamic experiment research on novel biomimetic pectoral fins of a ray-inspired robotic fish[J]. Machines, 2022, 10(8): 606. doi: 10.3390/machines10080606
|
[12] |
HU Q Q, YU Y L. The hydrodynamic effects of undulating patterns on propulsion and braking performances of long-based fin[J]. AIP Advances, 2022, 12(3): 035319. doi: 10.1063/5.0083912
|
[13] |
REN K, YU J. Amplitude of undulating fin in the vicinity of a wall: Influence of unsteady wall effect on marine propulsion[J]. Ocean Engineering, 2022, 249: 110987. doi: 10.1016/j.oceaneng.2022.110987
|
[14] |
PANG S, QIN F, SHANG W, et al. Optimized design and investigation about propulsion of bionic Tandem undulating fins I: Effect of phase difference[J]. Ocean Engineering, 2021, 239: 109842. doi: 10.1016/j.oceaneng.2021.109842
|
[15] |
XIA M, WANG H, YIN Q, et al. Design and mechanics of a composite wave-driven soft robotic fin for biomimetic amphibious robot[J]. Journal of Bionic Engineering, 2023, 20(3): 934-952. doi: 10.1007/s42235-022-00328-4
|
[16] |
SHI X, CHEN Z, ZHANG T, et al. Hydrodynamic performance of a biomimetic undulating fin robot under different water conditions[J]. Ocean Engineering, 2023, 288: 116068. doi: 10.1016/j.oceaneng.2023.116068
|
[17] |
DAS A K, SINGH R K, GUPTA N, et al. Comparative study using renormalized group k-ɛ, realizable k-ɛ, and standard k-ɛ models for flow through S-shaped diffuser[J]. International Journal on Interactive Design and Manufacturing(IJIDeM), 2024, 18(5): 3397-3411. doi: 10.1007/s12008-023-01609-w
|