• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 33 Issue 2
May  2025
Turn off MathJax
Article Contents
ZHENG Jixing, YUAN Yufan, ZHUO Xiaoxiao, LU Xuesong, QU Fengzhong, WEI Yan. Prediction of SNR Based on SVR and Adaptive Transmission Power Method for Underwater Acoustic Communication[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 291-298. doi: 10.11993/j.issn.2096-3920.2024-0180
Citation: ZHENG Jixing, YUAN Yufan, ZHUO Xiaoxiao, LU Xuesong, QU Fengzhong, WEI Yan. Prediction of SNR Based on SVR and Adaptive Transmission Power Method for Underwater Acoustic Communication[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 291-298. doi: 10.11993/j.issn.2096-3920.2024-0180

Prediction of SNR Based on SVR and Adaptive Transmission Power Method for Underwater Acoustic Communication

doi: 10.11993/j.issn.2096-3920.2024-0180
  • Received Date: 2024-12-30
  • Accepted Date: 2025-02-08
  • Rev Recd Date: 2025-02-04
  • Available Online: 2025-03-10
  • Marine environmental noise is influenced by many factors such as ocean waves, wind, rain, marine organisms, ships, and industrial activities. Its power is highly random. However, the continuous effect of factors such as sea surface temperature and tidal height can also make the power have certain periodic characteristics. Underwater environmental noise can directly affect the communication packet error rate during underwater acoustic communication. Although increasing the transmission power can raise the received signal-to-noise ratios and decrease the packet error rate, it also enhances the average energy consumption of communication. Therefore, in order to reduce the packet error rate and average energy consumption of underwater acoustic communication, this paper analyzed and predicted the signal-to-noise ratios time series based on the support vector regression(SVR) algorithm and proposed an adaptive transmission power method for underwater acoustic communication based on signal-to-noise ratio prediction. The simulation results show that compared with the exponential smoothing and autoregressive integrated moving average model(ARIMA) methods, the SVR algorithm based on the linear kernel function has the best performance in predicting signal-to-noise ratios and the smallest prediction error on test data. Under different modulation methods, the proposed adaptive transmission power method for underwater acoustic communication can improve the success rate of data packet transmission while reducing energy consumption per kilobyte.

     

  • loading
  • [1]
    乔钢, 刘凇佐, 刘奇佩. 水声通信网络协议, 仿真与试验综述[J]. 水下无人系统学报, 2017, 25(2): 151-160.

    QIAO G, LIU S Z, LIU Q P. Review of protocols, simulation and experimentation for underwater acoustic communication network[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 151-160.
    [2]
    LUO H, WANG J, BU F, et al. Recent progress of air/water cross-boundary communications for underwater sensor networks: A review[J]. IEEE Sensors Journal, 2022, 22(9): 8360-8382. doi: 10.1109/JSEN.2022.3162600
    [3]
    许肖梅. 水声通信与水声网络的发展与应用[J]. 声学技术, 2009, 28(6): 811-816. doi: 10.3969/j.issn1000-3630.2009.06.026

    XU X M. Development and applications of underwater acoustic communication and networks[J]. Technical Acoustics, 2009, 28(6): 811-816. doi: 10.3969/j.issn1000-3630.2009.06.026
    [4]
    SU W, LIN J, CHEN K, et al. Reinforcement learning-based adaptive modulation and coding for efficient underwater communications[J]. IEEE Access, 2019, 7: 67539-67550. doi: 10.1109/ACCESS.2019.2918506
    [5]
    吴雨珊. 自适应调制与功率分配的 OFDM 水声通信技术[D]. 哈尔滨: 哈尔滨工程大学, 2019.
    [6]
    孙秋实. 水声通信的自适应调制编码方法研究[D]. 杭州: 浙江大学, 2023.
    [7]
    QARABAQI P, STOJANOVIC M. Adaptive power control for underwater acoustic communications[C]//OCEANS 2011 IEEE-Spain. Santander, Spain: IEEE, 2011: 1-7.
    [8]
    WANG Z, WANG C, SUN W. Adaptive transmission scheduling in time-varying underwater acoustic channels[C]//OCEANS 2015-MTS/IEEE Washington. Washington, USA: IEEE, 2015: 1-6.
    [9]
    杨逍宇, 马伯乐, 周跃海, 等. 面向长时水声通信数据采集与评估的浮标设计与实现[J]. 数字海洋与水下攻防, 2022, 5(4): 279-284.

    YANG X Y, MA B L, ZHOU Y H, et al. Design and implementation of buoy for long-time underwater acoustic communication data acquisition and evaluation[J]. Digital Ocean & Underwater Warfare, 2022, 5(4): 279-284.
    [10]
    WANG X W, HE Z Q, HU Y, et al. Adaptive modulation and feedback strategy for an underwater acoustic link[C]//2022 Sixth Underwater Communications and Networking Conference(UComms). Seattle, Washington, USA: IEEE, 2022: 1-5.
    [11]
    Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20: 273-297. doi: 10.1109/TITS.2004.837813
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article Views(247) PDF Downloads(36) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return