• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 33 Issue 2
May  2025
Turn off MathJax
Article Contents
YU Manjiang, HE Jiawei, XING Bowen. Unmanned Surface Vessel Cluster Path Planning Based on Deep Reinforcement Learning[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 380-388. doi: 10.11993/j.issn.2096-3920.2024-0179
Citation: YU Manjiang, HE Jiawei, XING Bowen. Unmanned Surface Vessel Cluster Path Planning Based on Deep Reinforcement Learning[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 380-388. doi: 10.11993/j.issn.2096-3920.2024-0179

Unmanned Surface Vessel Cluster Path Planning Based on Deep Reinforcement Learning

doi: 10.11993/j.issn.2096-3920.2024-0179
  • Received Date: 2024-12-30
  • Accepted Date: 2025-02-17
  • Rev Recd Date: 2025-02-13
  • Available Online: 2025-03-11
  • With the wide application of unmanned surface vessels(USVs) in the field of maritime search, the traditional path planning algorithms fail to meet the complex rescue scenarios, which can lead to local optimum, low task completion rate, and slow convergence speed. For this reason, a path planning method for USV cluster cooperative search and rescue was proposed. Firstly, a long and short-term memory module was introduced based on the multi-agent deep deterministic policy gradient algorithm to enhance the ability of the USVs to utilize the temporal information in path planning; secondly, a multi-level representational experience pool was designed to improve the training efficiency and data utilization and reduce the interference between different experiences; finally, stochastic network distillation was used as a curiosity mechanism to provide intrinsic rewards for the USVs to explore new regions and solve the convergence due to the sparse rewards. The simulation experiment results show that the improved algorithm improves the convergence speed by about 38.46% compared with the original algorithm, and the path length has been shortened by 27.02%. In addition, the obstacle avoidance ability has been significantly improved.

     

  • loading
  • [1]
    肖乾治, 陈大力, 殷昭鲁. 新时代发展海洋经济建设海洋强国思考[J]. 商业经济, 2023(8): 5-7. doi: 10.3969/j.issn.1009-6043.2023.08.003
    [2]
    费陈, 贺拥亮, 赵亮, 等. 面向海上复杂环境的无人艇集群航迹规划发展综述[J]. 电讯技术, 2024, 11(3): 1-11.
    [3]
    陈羽, 褚天仁. 水面无人艇路径规划研究现状[J]. 科技创新与应用, 2024, 14(6): 84-87.
    [4]
    唐杭斌. 水面无人艇研究现状与发展趋势[J]. 船舶物资与市场, 2020(3): 13-14.
    [5]
    CHU Y J, GAO Q Z, YUE Y, et al. Evolution of unmanned surface vehicle path planning: A comprehensive review of basic, responsive, and advanced strategic pathfinders[J]. Drones, 2024, 8(10): 540. doi: 10.3390/drones8100540
    [6]
    王秀玲, 尹勇, 赵延杰, 等. 无人艇海上搜救路径规划技术综述[J]. 船舶工程, 2023, 45(4): 50-57.

    WANG X L, YIN Y, ZHAO Y J, et al. Overview of USV maritime search and rescue path planning technology[J]. Ship Engineering, 2023, 45(4): 50-57.
    [7]
    DIJKSTRA E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1): 269-271. doi: 10.1007/BF01386390
    [8]
    HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107. doi: 10.1109/TSSC.1968.300136
    [9]
    HOLLAND J H. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence[M]. Cambridge, USA: MIT Press, 1992.
    [10]
    DORIGO M, DI CARO G, GAMBARDELLA L M. Ant algorithms for discrete optimization[J]. Artificial Life, 1999, 5(2): 137-172. doi: 10.1162/106454699568728
    [11]
    RAIBAIL M, RAHMAN A H, AL-ANIZY G J, et al. Decentralized multi-robot collision avoidance: A systematic review from 2015 to 2021[J]. Symmetr, 2022, 14(3): 610. doi: 10.3390/sym14030610
    [12]
    LI Y, LI X W, WEI X W, et al. Sim-real joint experimental verification for an unmanned surface vehicle formation strategy based on multi-agent deterministic policy gradient and line of sight guidance[J]. Ocean Engineering, 2023, 270: 113661. doi: 10.1016/j.oceaneng.2023.113661
    [13]
    LOWEN R, WU Y, TAMAR A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments [C]//Proc of the 31st Int Conf on Neural Information Processing Systems. Cambridge, USA: MIT, 2017: 6382-6393.
    [14]
    王思琪, 关巍, 佟敏, 等. 基于ATMADDPG算法的多水面无人航行器编队导航[J]. 吉林大学学报(信息科学版), 2024, 42(4): 588-599.

    WANG S Q, GUAN W, TONG M, et al. Formation navigation of multi-unmanned surface vehicles based on ATMADDPG algorithm[J]. Journal of Jilin University (Information Science Edition), 2024, 42(4): 588-599.
    [15]
    刘鹏, 赵建新, 张宏映, 等. 基于改进型MADDPG的多智能体对抗策略算法[J]. 火力与指挥, 2023, 48(3): 132-138.

    LIU P, ZHAO J X, ZHANG H Y, et al. Multi-agent confrontation strategy algorithm based on improved MADDPG[J]. Fire Control & Command Control, 2023, 48(3): 132-138.
    [16]
    LU R Z, HONG S. Incentive-based demand response for smart grid with reinforcement learning and deep neural network[J]. Applied Energy, 2019, 236: 937-949. doi: 10.1016/j.apenergy.2018.12.061
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article Views(778) PDF Downloads(86) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return