
| Citation: | YU Manjiang, HE Jiawei, XING Bowen. Unmanned Surface Vessel Cluster Path Planning Based on Deep Reinforcement Learning[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 380-388. doi: 10.11993/j.issn.2096-3920.2024-0179 |
| [1] |
肖乾治, 陈大力, 殷昭鲁. 新时代发展海洋经济建设海洋强国思考[J]. 商业经济, 2023(8): 5-7. doi: 10.3969/j.issn.1009-6043.2023.08.003
|
| [2] |
费陈, 贺拥亮, 赵亮, 等. 面向海上复杂环境的无人艇集群航迹规划发展综述[J]. 电讯技术, 2024, 11(3): 1-11.
|
| [3] |
陈羽, 褚天仁. 水面无人艇路径规划研究现状[J]. 科技创新与应用, 2024, 14(6): 84-87.
|
| [4] |
唐杭斌. 水面无人艇研究现状与发展趋势[J]. 船舶物资与市场, 2020(3): 13-14.
|
| [5] |
CHU Y J, GAO Q Z, YUE Y, et al. Evolution of unmanned surface vehicle path planning: A comprehensive review of basic, responsive, and advanced strategic pathfinders[J]. Drones, 2024, 8(10): 540. doi: 10.3390/drones8100540
|
| [6] |
王秀玲, 尹勇, 赵延杰, 等. 无人艇海上搜救路径规划技术综述[J]. 船舶工程, 2023, 45(4): 50-57.
WANG X L, YIN Y, ZHAO Y J, et al. Overview of USV maritime search and rescue path planning technology[J]. Ship Engineering, 2023, 45(4): 50-57.
|
| [7] |
DIJKSTRA E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1): 269-271. doi: 10.1007/BF01386390
|
| [8] |
HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107. doi: 10.1109/TSSC.1968.300136
|
| [9] |
HOLLAND J H. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence[M]. Cambridge, USA: MIT Press, 1992.
|
| [10] |
DORIGO M, DI CARO G, GAMBARDELLA L M. Ant algorithms for discrete optimization[J]. Artificial Life, 1999, 5(2): 137-172. doi: 10.1162/106454699568728
|
| [11] |
RAIBAIL M, RAHMAN A H, AL-ANIZY G J, et al. Decentralized multi-robot collision avoidance: A systematic review from 2015 to 2021[J]. Symmetr, 2022, 14(3): 610. doi: 10.3390/sym14030610
|
| [12] |
LI Y, LI X W, WEI X W, et al. Sim-real joint experimental verification for an unmanned surface vehicle formation strategy based on multi-agent deterministic policy gradient and line of sight guidance[J]. Ocean Engineering, 2023, 270: 113661. doi: 10.1016/j.oceaneng.2023.113661
|
| [13] |
LOWEN R, WU Y, TAMAR A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments [C]//Proc of the 31st Int Conf on Neural Information Processing Systems. Cambridge, USA: MIT, 2017: 6382-6393.
|
| [14] |
王思琪, 关巍, 佟敏, 等. 基于ATMADDPG算法的多水面无人航行器编队导航[J]. 吉林大学学报(信息科学版), 2024, 42(4): 588-599.
WANG S Q, GUAN W, TONG M, et al. Formation navigation of multi-unmanned surface vehicles based on ATMADDPG algorithm[J]. Journal of Jilin University (Information Science Edition), 2024, 42(4): 588-599.
|
| [15] |
刘鹏, 赵建新, 张宏映, 等. 基于改进型MADDPG的多智能体对抗策略算法[J]. 火力与指挥, 2023, 48(3): 132-138.
LIU P, ZHAO J X, ZHANG H Y, et al. Multi-agent confrontation strategy algorithm based on improved MADDPG[J]. Fire Control & Command Control, 2023, 48(3): 132-138.
|
| [16] |
LU R Z, HONG S. Incentive-based demand response for smart grid with reinforcement learning and deep neural network[J]. Applied Energy, 2019, 236: 937-949. doi: 10.1016/j.apenergy.2018.12.061
|